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To my life partner Adrys,
to my brothers Andres and Tiago,
to my sister Andreina,
to my father Tavito,
and especially to my mother La Gordis.






Hay dias en que somos tan mdéviles, tan méviles,
como las leves briznas al viento y al azar.
Tal vez bajo otro cielo la Gloria nos sonrie.

La vida es clara, undivaga, y abierta como un mar.

Y hay dias en que somos tan fértiles, tan fértiles,
como en abril el campo, que tiembla de pasién:
bajo el influjo prévido de espirituales lluvias,
el alma esta brotando florestas de ilusion.

Y hay dias en que somos tan sérdidos, tan soérdidos,
como la entrana obscura de oscuro pedernal:

la noche nos sorprende, con sus profusas lamparas,
en rutiles monedas tasando el Bien y el Mal.

Y hay dias en que somos tan placidos, tan placidos...
(jninez en el crepisculo! jLagunas de zafir!)

que un verso, un trino, un monte, un péjaro que cruza,
y hasta las propias penas nos hacen sonreir.

Y hay dias en que somos tan libricos, tan ldbricos,
que nos depara en vano su carne la mujer:
tras de cenir un talle y acariciar un seno,

la redondez de un fruto nos vuelve a estremecer.

Y hay dias en que somos tan ligubres, tan ligubres,
como en las noches ligubres el llanto del pinar.
El alma gime entonces bajo el dolor del mundo,

y acaso ni Dios mismo nos puede consolar.

Mas hay también jOh Tierra! un dia... un dia... un dfa...
en que levamos anclas para jamas volver...
Un dia en que discurren vientos ineluctables
jun dia en que ya nadie nos puede retener!

Cancion de la vida profunda,
Porfirio Barba Jacob
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Frequently used notations

(a), Pochhammer symbol defined by (a), :=a(a+1)---(a+n—1).
B Multi indexes, usually § = (5, Bn+1) € I with 5/ = (b1, ..., Bn)-
B+ (0,k) Multi indexes given by 5+ (0',k) = (B1,. .., Bn, Bnt1 + k).
01 % 09 Joint cycle.

7 Gelfand-Leray form.

GHod,,(X,Q)o Space of generic Hodge cycles.

wg Form on C™t! defined as wg = 2Pdr = it xﬁ’fll dry A--- ANdxpyq.

SHod,,(X,Q)o Space of strong generic Hodge cycles.

Ag Rational number that allows distinguishing forms in a filtration. It is defined by
Ag = Z?Ll (Bj + 1), We will usually rewrite it as Ag := Z?ill Bjm—tl

B(ay,- - ,ap4+1) Multi parameter version of beta function.

E(a,b,c) Gauss hypergeometric differential equation.

F(a,b,c; z) Hypergeometric function.

I,J  Sets of multi indexes with I = J X Iy, J = I;y; X -+ X L, and I, = {0,1,2,...,m; —2}.

res  The residue map.

S (2] EE EEEE

g & E & 2]
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Introduction

Research Framework

The present work is devoted to the study of hypersurfaces with hypergeometric periods. We focus on
a particular class, Fermat varieties perturbed by P(y) = y(1 — y)(A — y). Periods (roughly speaking
multiple integrals) are an essential part of Hodge theory that have their deepest origins in elliptic and
abelian integrals. We do not aim to verify the Hodge conjecture in our examples, rather we would like
to analyze transcendental properties of integration over Hodge cycles.

Deligne in 1982 explored periods of algebraic cycles. He proved that up to some constant power
of 27y/—1, the periods of algebraic cycles are algebraic with respect to the field of definition of the
variety (see [Del82]). This would be also true for Hodge cycles if the Hodge conjecture holds true.
In fact, Deligne proved that this property is satisfied by periods of Hodge cycles in classic Fermat
varieties even though Hodge conjecture is unknown in this case. With this, he obtained algebraic
relations between the values of the I'-function on rational points. This same idea was elaborated in
2006 by Reiter and Movasati with the family

M :  f(x) ::x:{’+$g+---+$§—$1—ﬂf2:t»

to obtain algebraic relations of values of the hypergeometric functions (see [MRO06]). For example,
they proved that

5 1 2742
ini T (550 L 76t7)
F (55151 = $5t?)

belongs to Q((3) for some ¢ € Q if and only if

WzF(%’%vl?s%tZ) W2F(%>%71’13 %tZ) cQ.
T (3) I (3)

For instance, the above is satisfied if ¢ is any root of the following equations

91125¢t* — 54000¢2 4 256, 81000t* — 48000¢> — 1,

see [MRO6] and the references therein.
In this thesis, we elaborate these same ideas with the family
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My: f(z) ="+ +ap +yly—1)(y—A) =0.

We compute its periods and use them to give algebraic values of some hypergeometric functions (see
equation (I))). This result is framed in Schwarz’ work. Schwarz in [Sch73] was the first to classify
hypergeometric functions which are algebraic over C(z). A crucial idea was to relate the hypergeomet-
ric equation with the Monodromy group. In the famous Schwarz’ list, Schwarz determines explicit
criteria for the parameters of the irreducible hypergeometric equations such that the solutions are
algebraic. In the same work, Schwarz also obtained a similar but not so famous criterion in the case
of reducible hypergeometric equations (see also [Kim69)).

A more general question raised by Wolfart in [Sar07] is to determine the transcendence degree of
the field extension of @ generated by the hypergeometric functions F'(a,b,c; z) where a, b, c € Q
with some fixed denominator. Or even better to determine a complete list of algebraic dependence
equations among these F'(a,b,c;z) over the field C(z). Examples of such relations are Propositions
and Schwarz’ list and Gauss’ relations between contiguous hypergeometric functions. Up to
the author’s knowledge, Wolfart’s problem remains open and without significant progress.

Main Results

Let n be an even number, g(z) = z{"" + --- + a]'», m; > 2, and let P be a degree m = myq;
polynomial. Consider

f=g(x)+ P(y),

and let F be its quasi-homogenization inside the weighted projective space P(?) where v; = lem(my,-.-smn+1)

m;
for j =1,...,n+1. Let X be a desingularization of the weighted hypersurface D := {F = 0} c P(V),
We are interested in Hodge cycles of X supported in the affine part U := {f = 0}. For this, we
consider a parametric family. Let

T := {t = (to,...,tm) € cm e, =1, A(P,;) # 0 where P, := Ztlyz}
=0

be the space of polynomials of degree m with nonzero discriminant, and let

U= {(z,y,t) € C" x Cx T| fi(x,y) = g(z) + Py(y) = 0}

be the family of affine varieties parameterized by T'. Thus, the projection 7w : Y — T is a locally trivial
C* fibration (see [Mov20, §7.4] and the references therein). We denote by U; := m~1(¢t) = {f; =0} C
C™*! and X, be a desingularization of D; := {F; =0} C P(Y) where F; is the quasi-homogenization
of ft-

We say that a cycle &, € Hy(Uy,,Q) is a generic Hodge cycle if all perturbations ¢; of it in
the family T are Hodge cycles (see Definition [4.1)). This space is denoted by GHod,(X,, Q). We
consider a subspace of the generic Hodge cycles space by imposing certain conditions, which we call
the space of strong generic Hodge cycles and we denote it by SHod,,(Xy,, Q) (see Deﬁnition.

The first result of this thesis is an upper bound of the dimension of the space of strong generic
Hodge cycles in certain cases (see Theorem |4.2)).
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Theorem 0.1. Let X be a desingularization of the weighted hypersurface D given by the quasi-
homogenization F of f = g(z) + P(y), where g(z) = ] 4+ --- + 2, m; > 2 and P is a polynomial
of degree m.

i. Formi=---=mu,_1=2andm>7

m—1 m, even,

dim SHOdn(X7 Q)O S { 0 Mp odd.

1

mp—1

1 1
+ ;. < 3, we have

ii. For my = -+ = myu_o = 2, my_1 prime, ged(my—1,m,) = 1 and
SHod,, (X, Q)p = 0.

iii. For m; different prime numbers, we have SHod, (X, Q)¢ = 0.

In fact, the proof of the previous theorem provides a method to calculate a set of generators of
SHod,,(X,Q)g even if m < 7 in the first case and if + % > 1 for the second case (see Corollary

. Using this method, we get for example:

Mn—1

Corollary 0.1. Let X be a desingularization of the weighted hypersurface D given by the quasi-
homogenization F of f = g(z) + P(y), where g(z) = 2% + 23 + --- + 22 | + 2™ and P(y) is a
polynomial of degree m = 2,...,6. Then

dim SHod,, (X, Q)¢ < (m — 1) Yo e@|,
2<d<[ 215
d|mn
where ¢ is the Euler’s totient function. When m = 2 means that 2 < d < m,, and d|m,,. Therefore
for m = 2, dim SHod,, (X, Q)o < (m, — 1).

We obtain algebraic values of the hypergeometric function by a different method than that used
by Schwarz (see Corollary [4.6]). For this, we restrict ourselves to the case Py(y) = y(1 —y)(A — y),
and we compute the periods on explicit strong generic Hodge cycles. For example, we get

515 7T —-17 —_—
F(=,-,=;1-X F{=-,—,=;1=X A). 1
(Goat-2) P55 51-2)cam )
The above is somewhat exceptional given that periods are usually transcendental. Other by-products

of this work are examples of non-algebraic hypergeometric functions that satisfy algebraic relations
between them (see Propositions and [4.9)).

Proposition 0.1. The following expressions are in Q(\) :

4 4 8 2 /4 18
F2, ==, 2122 = A+ —ZF (=, -2, 2:1=X) (A+1)(5A% — 8\
046 (3, 55 >( +1) -3 <3, 33 )( +1) (5A" —8A +5),
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2 24 2 (214
2F (2, -2 21— A)—ZSF (2,2, 251-A) (A +1
O;é (37 3737 > 3 <373737 >( + )7

1_(2 24
0 #4F 5, Zil=A A= A4+1)—F (S, =2, 551 =X (A 4+ 1) (8N — 11X + 8)+
3 37 \3 3’3
214
F(Z,=,-:1— 1—\)?
(373737 A) )\( )\) ?
2 8 4 2 (2 54
FlZ,——, 1= A (A= A+ —SF (2, =S, 51 =X ) (A +1)(7TA2 — 10\
068 (5.5 531 =3) 02 = a4 )= 3F (55512 A) (o (02 - oA+ D)4
2 24
2F (2, =2, 51— A ) A1 = N)?
(3531 2) -2

but each hypergeometric function in the expressions above is not algebraic over Q(\). For a numerical
verification of this proposition see §4.5)

We can find the algebraic functions of the expressions in Proposition using hypergeometric
theory via Gauss’ relations, see Remark[4.7 Proposition[0.1]suggests that the Hodge cycles in Theorem
and Corollary should be absolute in the sense of Deligne, see [Del82]. Moreover, the algebraic
functions in Proposition [£.8 might be used in order to construct the underlying algebraic cycles
explicitly, see [MS20].

Similarly to Schwarz’ work, Beukers and Heckman classified the generalised hypergeometric func-
tions which are algebraic over C(z) in [BH89]. On the other hand, meantime this article was being
written, Movasati was able to obtain similar algebraicity properties of periods which are gathered
in [Mov20, §16.9]. Apparently these periods must be related in some way to the generalised hyperge-
ometric functions described in [BH89], for instance via a pull-back. For the classification scheme of
pull-back transformations between Gauss hypergeometric differential equations see [Vid09|.

Content description

This thesis is organized in the following manner.

In Chapter [I, we present Griffiths-Steenbrink’s theory on the cohomology of weighted hypersur-
faces. This allows us to construct a basis for the de Rham cohomology of weighted hypersurfaces.
What was developed in this chapter justifies our definition of the Hodge cycle. In this chapter, we set
up notation and terminology.

In Chapter [2| we present a technique to calculate periods. For this, we describe a particular basis
of homology, namely joint cycles and we give a formula for the integral of differential form with pole
of order one on these cycles. In this chapter we also give a basis for the homology and cohomology
of affine Fermat varieties and we compute the integral on these bases, which naturally arise in the
calculation of periods on a perturbation of a Fermat variety.

In Chapter |3 we explain how to reduce the order of the pole of a differential form, in order to use
the formula given in the previous chapter. With this, we calculate the periods on a perturbation of a
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Fermat variety, more specifically the perturbation given by P(y) = y(1 —y)(A —y). We also provide a
criterion for when a differential form in the affine part actually comes from a differential form on the
compactification, this is important to establish that certain hypergeometric periods are algebraic.

In Chapter ] we introduce the concept of strong generic Hodge cycle and we offer a method to
calculate a set of generators in certain cases. With this and with what was developed in the previous
chapter we find expressions involving the hypergeometric function such that they are algebraic.

In our context, the hypergeometric function appears naturally when calculating periods. That is
why the appendix [A] contains a review of some of the standard facts on the hypergeometric function
including numerous equalities satisfied by it as well as theorems that characterize the algebraicity of
this special function and which were used in the text.
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CHAPTER 1

Cohomology of hypersurfaces

In this chapter we will explain how to construct a basis for the de Rham cohomology of a weighted
hypersurface. The homogeneous case was developed by Griffiths in |Gri69] and the generalization
to weighted hypersurfaces is due to Steenbrink [Ste77]. In §1.1] we give a brief exposition of this
construction in the homogeneous case. In §1.2] we deal with weighted case. This basis will be used
to define Hodge cycles on a perturbation of a Fermat variety in a explicit way as well as to compute
these periods. Section is devoted to describing Hodge cycles with affine supported via cycles at
infinity. This approach was pointed out by Hossein in [Mov20]. All this will justify the definition of
Hodge cycles in our case of interest given at the end of this section.

1.1 Homogeneous case

The algebraic de Rham cohomology for any smooth algebraic variety was defined by Grothendieck
in [Gro66| inspired by the work of Atiyah and Hodge [HA55|. A remarkable fact is that the algebraic de
Rham cohomology of a smooth projective variety X is isomorphic to the classical de Rham cohomology
of the underlying C*° manifold X*°. Good references for this are [Vill9] and [MV20]. That is why
we will use these cohomologies interchangeably.

Let M C P"*! be a smooth projective hypersurface of degree d and V' = P"*!1\ M. By the Lefschetz
hyperplane section theorem

Cl6*?] keven; k #n
HEp(M)=1{ 0 k odd; k #n
CH k=n

with 6 the 2-form associated with the Kahler structure, also called the polarization. Therefore, the
only non-trivial Hodge cycles of M lie in H}j,(M). Thus, we are just interested in determining a basis
for the non-trivial cohomology of M. Remember that the primitive cohomology corresponds to

Hjp(M)g := {w € Hjp(M)|w A6 =0}
To construct the basis for H}}, (M) it is enough construct the basis for H}},(M)g because by Lefschetz
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Chapter 1 Homogeneous case

decomposition we have
Hir(M) = Hir(M)o @ 02C,
with 6 the polarization. For this purpose we will give the generators for Hg;{ 1(V) compatible with the
Hodge filtration F k“Hg;{ 1(V), then we will obtain the desired basis by applying the residue map to
the generators and reduce the set of generators to a basis. The residue map can be defined as follows:
by Thom-Leray isomorphism (see [Mov20, §4.6]), we have
Hk—l(M7 Z) = Hk+1(Pn+17 ]P)n+1\M7 Z)7
Writing the long exact sequence of the pair (P! P"1\ M) and using the previous isomorphism we
obtain
oo = Hyp (PP 7)) — Hy (ML, Z) 5 Hy(V,Z) — Hy(PPLZ) — .

Let us write this in de Rham cohomology:

o HEELPTY) 5 qHERL(V) B B (M) — HEF2(PT) L

We have that .
HESY (V) T HER(M)q

is an isomorphism. The de Rham cohomology of M is isomorphic to the de Rham cohomology of P"*!
except for the n-th cohomology group, so the only nontrivial isomorphism is

Hig (V) % Hjp(M)o.
That is why we are only interested in the middle cohomology.
Definition 1.1. The map res = resp; := o* is called the residue map. It is uniquely characterized

by

/res(w) —/ w, weH V), §€ Hy(M,Z).
0 o(9)

It is possible to introduce algebraically the residue map as well as the Hodge filtration F' k“Hgg L)
such that the Hodge filtration of V is compatible with Hodge filtration the M via the algebraic residue
map.

The following theorem gives a set of generators of Hgf{ Lv).

Theorem 1.1 (Griffiths [Gri69]). For every k = 0,...,n there is a natural map
HO (P Q0 (k+1)M)) — HjEH (V)

such that the image is equal to F"*1=F F:F1 (V). Here Qﬁﬂl ((k + 1)M) denotes the sheaf of algebraic
(n + 1)-forms in P"*! with pole of order at most k + 1 along M. Consequently, every piece of the
Hodge filtration F"‘ngR(M )o is generated by the residues of global forms with pole of order at most

k+ 1 along M.
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Cohomology of hypersurfaces

Remark 1.1.

e The sheaf Q%ﬂl ((k +1)M) of algebraic (n + 1)-forms in P"*! with pole of order at most k + 1
along M is given locally by:

W

Qgrﬁl (k+1)M)(U) := {W‘ w (n 4+ 1)-holomorphic form on U of degree (k + l)deg(F)} ,

with M = {F = 0}.

e Consider Q2 = Z?i&(—l)ij%\] with d/.%'\J =dxog Ndx1 N--- A dxj_l A dl‘j_H A+ ANdxpy and
M = {F = 0}, then we have

we H° (P, Qetl (k+1)M)) <= w = Fpk—i,
where P is a homogeneous polynomials of degree d(k + 1) — (n + 2).
e By the previous observation, we have
HY (P ptl (k+1)M)) = HY (P, Opnia (d(k+ 1) —n —2)) ,

Pn+1

where Opn+1 (j) denotes the Twisted sheaf of degree j. Locally the Twisted sheaf is given by

P
Opnt1 (§) (U) := {Gk‘ P homogeneous polynomial and deg(P) = j + k:deg(G)} )

with U = P"*1\{G = 0} and G homogeneous polynomial.
Theorem 1.2 (Griffiths [Gri69]). For every k = 0,...,n the kernel of the map
HO (P, Opnsa (d(k+1) —n—2)) —  F""HI(M)o/F" = HT (M)
P — res (%)
is the degree N = d(k + 1) — (n + 2) part of the Jacobian ideal of F', JN C C[xo,...,%n4+1]n Where

Ty m <6F OF

— ..., — ) C Clxg,...,x
axov ) 8$n+1> [ 05 ) n+1]
Remark 1.2. The previous theorem implies that to choose a basis for

Fr=kH (M)
FnJrlkaCrlzR(M)o

~ ank,k(M)O

it is enough to take the elements of the form res (Fi—%) for P € Clxg,...,znt1]n forming a basis of

VN — C[ﬂ?o,...,l‘n+1] '
F JF N

In particular
hn_k’k(M)o = dim(c V},{V

25



Chapter 1 Weighted case

1.2 Weighted case

Let v = (v1,...,vn41) With v; € N, we define the action GV = C* on C"*1\{0} by
A (21, 1) = (A, o A g, ).

We call vy, ...,v,41 the weights.

Definition 1.2. Define the v-weighted projective space as the quotient

PY -— ((Cn+1\{0}) /Gv — ((Cn+1\{0}) /C*

We write points in PV as |21, ..., Zntilo-
2w/ —1Im
We can give another interpretation of PV as follows: let Gy, := {e i ‘ m € Z}. The group
;l;rll Gy, acts discretely on the usual projective space as follows

(€1, s €nt1) [T1y ooy Tng1] == [€121, -+, €np1Tnt1]- (1.1)

The quotient space P/ @?ill Gy, is canonically isomorphic to PY. This canonical isomorphism is
given by

P/ @I Gy, — PY
Un .
[T1,...,Tnt1] — |x11’1,...,xn_;”11 )
Let f € Clz1,...,2n41] where weight(z;) = v;. We say that f is v-weighted homogeneous (or

quasi-homogeneous) of degree d if
f=2_as’

where 8 = (B1,..., Bny1) and 27 = xf1x§2 . xg’fll such that Z?ill vj; = d. Equivalently

FOV zy, o A ) = A f (2,0 2ny1) YA € C.

For any polynomial f in the weighted ring Clx1,...,Zy4+1], it can be written in a unique way f =
Eé\io fi with f; is a v-weighted homogeneous polynomial of degree i and fy # 0, the number N is
called the degree of f.

Definition 1.3. A polynomial f € C[zy,...,2,11] is called a tame polynomial if there exist natural
numbers v € N?*! such that f = Ef\; o fi with f; is a v-weighted homogeneous polynomial of degree
i and fy # 0 has an isolated singularity at 0 € C**!, this means that the Milnor module

Clzi, ..., xnt1]
Viy = <3fN>
R

is finitely generated.
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Cohomology of hypersurfaces

We can quasi-homogenize f, namely

Tn+1
F(xo,...,xn+1)—x0f< T an).
Ty Lo

Thus, F'is (1, v)-weighted homogeneous. On the other hand, let P(1%) be the projective space of weight

(1,v) = (1,v1,...,0p41), PIY) is a compactification of C*"*t' = {(z1,...,2,11)} with coordinates
PN\ {zg =0} ~— cntl
[x(]a"'wxn—i-l] — 56%7"'7582?1) :

Therefore we can regard {f = 0} as an affine open subset in {F = 0} c P(1*),

Definition 1.4. We say that a subset W C P? is a weighted projective variety if

W = {p eP’ fj(p)=0 j=1,...,N and f; is v-weighted homogeneous} )
Let g be a v-weighted homogeneous polynomial of degree d. Then D = {g = 0} C P? is a weighted
hypersurface. Suppose that g has an isolated singularity at 0 € C"™L. Let g = g(ai* ,...,xZ’f:ll)

thls is a homogeneous polynomial of degree d, g has an isolated singularity at 0 € C”+1 and so
= {g = 0} C P" is smooth variety. It turns out that D is invariant under the action and

n+1
- D / PG, <P
j=1

Definition 1.5. The de Rham cohomology of D C P is the invariant part of the de Rham
cohomology of D under the action of the discrete group @"H Gy, on D given in 1) that is

n+1
€fw=w Vec @ij
i=1

A similar definition is made for the de Rham cohomology HJj(P"\D).

H7H(D) :={ w € Hjh(D)

Inspired by the smooth case, we consider H}5 ' (D)o := Im(H75(P'\D) - H''>(D)) which has
a filtration induced by the residue map. The following theorem gives a set of generators of H},(D)o.

Theorem 1.3 (Griffiths [Gri69], Steenbrink [Ste77]). Let g(x1,...,zn4+1) be a quasi-homogeneous
polynomial of degree d, weight v = (vq,...,v,4+1) With an isolated singularity at 0 € C*"*! and D
defined by g. For every k = 0,...,n — 1 there is a natural map

H (B, Q0 ((k +1)D)) — Hp(P*\D)

such that the image is equal to F' "*ngR(IP’v\D). Consequently, every piece of the Hodge filtration
F”_l_ng‘g 1(D)y is generated by the residues of global forms with pole of order at most k + 1 along
D, this is generated by
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Chapter 1 Weighted case

PQ
T€S<. ); JI<k+1
g]
n+1

where P is a v-weighted homogeneous polynomial of degree dj—> /""" v; and 2 = E"H( 1)7 _1vj$jd/:r;
with d$j =dry ANdxg N -+ A dxj,1 A dl‘j+1 A ANdxpyr.

Corollary 1.1. Let f(z1,...,2,+1) be a tame polynomial of degree d and D be the hypersurface
defined by the quasi-homogenization F' of f. Let U := {f = 0} be the affine part of D. The
Im(H}(D)o — H3n(U)) has a filtration Fj™ ™% generated by

L’] { (32) Jas<i}.

Jj=1

where wg = 2dx == 2" .. g’flldxl Ao ANdepy1, 1 <k <n-+1and Ag:= Z"H(B] +1)4

Proof. Consider D; := {1:5 08 ! Z”H Biv; = dj — Z:LJrOI vl} So applying previous theorem to
F(zg,...,Tn41) we obtain that F"1=KF {7 (D) is generated by

e (557 e

U res ’ .

j=1

{xgoxﬁﬁ } _{wlg}
zo=1J 408D, P as<s

Fi
Theorem 1.4 (Griffiths [Gri69], Steenbrink [Ste77]). Let g(x1,...,2,+1) be a weighted homogeneous
polynomial of degree d, weight v = (v1,...,v,11) with an isolated singularity at 0 € C**! and D
defined by g. We have

Now, observe that

HO (PY, Q" (xD))

Hir(P\D) = T (Pv, Qn—1(xD))

and under the above isomorphism

Fn—k+1 N HO (]P)U’ Qn(k‘D))
Fr—k+2 = dHO (Pv, Q"=1((k — 1)D)) + HO (Pv, Q"((k — 1) D))’
where 0 = F"*1 c F* C ... ¢ F! C F° = Hug(P'\D) is the Hodge filtration of Hyr(P*\D). Let

{:UB ‘ sel } be a basis of monomials for the Milnor module
Clzy,...,2nq1]

RN
9z; i=1,...,n+1

)

Vy =
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Cohomology of hypersurfaces

A basis of £ 5 is given by

i k+
{7l
ot Tl
where 2 = Znﬂ( 1)’ vjx]dx] with dx] i=dxy Ndxa N - Ndxj_1 Ndzjiq A--- Ndrpr and Ag =
S + 1Y
4. Mnt1

Example 1.1. Let g = z(* -+ x,"" be a weighted homogeneous polynomial of degree d and
weight v = (vg, ..., vn11). By the previous theorem H™(D)g has a filtration 0 = F"*! c F* C ... C
FY = H"(D)g. A basis of F"*1=* is given by

k mgoxﬁQ
U res v .
j=1 g A(Bg,8)=7

(BOaB)GImO xTI

where I = I, X -+ X Ly, ., and I, = {0,1,...,m; — 2}. The restriction 2o = 1 induces a filtration

FSLJrl*k in Im(HdR(D)O — HZ]R(U)) with basis given by

Ul ()

Jj=1 Bel

1.3 Hodge cycles

Let M be a smooth projective hypersurface and Y be a smooth hyperplane section of M. Writing the
long exact sequence of the pair (M, V'), where V' = M\Y, and using the Thom-Leray isomorphism we
have

o Hy 1 (Y, Z) S Hy(V,Z) 5 Hy(M,Z) 5 Hy_o(Y,Z) > ...,
where the map 7 is the intersection with Y.
Definition 1.6. An element § € H,(V,Q) is called a cycle at infinity if § € Ker(H,(V,Q) =
H,(M,Q)). We denote

Hy(V,Q)oo = Ker(H,(V,Q) 5 Hy(M,Q))
= Im(anl(Y’ Z) % Hn(VvQ))

We denote the primitive homology (dual to the primitive cohomology, see [Mov20, §5.7]) b
H,(M,Q)y:={x € H,(M,Q)| [Y] -z =0}
= Ker(H,(M,Q) > H,_»(Y,Q)).

29



Chapter 1 Hodge cycles

Thus, we can consider the primitive homology as

H,(M,Q)o : = Ker(H,(M,Q) 5 H,_5(Y,Q))
= Im(H,(V,Q) % H,(M,Q))
N Hn(V, Q) '
Ker(H,(V,Q) % H,(M,Q))

In conclusion the study of the primitive homology of M can be done by studying the homology of its
affine part, since

H,(V,Q)
H,(M,Q)o & ——1—, 1.2
A NG 2
On the other hand, we have the Hodge filtration: 0 = F"*' C F" C ... C F! C F° = H'},(M) with

FF=FraR (M) = H0 + H"= b1 oo HRF where HPF = Hk" (M), which allows us to
define Hodge cycles.

Definition 1.7. A cycle § € H,(M, Q) is called a Hodge cycle if

/F3+1 =0.
)

We denote by Hod,,(M,Q) the space of Hodge cycles in H, (M, Q).
Now, using [Mov20, Proposition 5.10] and equation ([1.2)) we have

{semv,Q) f; /7" =0}

Hod, (M, := Hod,(M,Q) N H, (M, = 1.3
(M, Q)o (M,Q) (M, Q)o {5 € H,(V.Q)| [, F0 = 0} (1.3)

with Ff = F¥ 0 HL(M).
Let us go back to our case of interest: remember that wg = 2Bdr = ]t g’jjll dry A ANdxpyr
and Ag = Z"H(ﬁj + 1)UJ The polynomial f = g(x) + P(y) is a tame polynomlal in (C[a:l, ey Tt
with weight(x;) = v; == m—]_ and d = lem(mq,- -+, myy1) where g(z) = 2™ +--- + 27, m; > 2, and

P(y) : C — C is a polynomial of degree m = m,,11. Inspired by Corollary and equation (|1.3)), we
have the next definition.

Definition 1.8. Let X be a desingularization of the weighted hypersurface D given by the quasi-
homogenization F' of f = g(x) + P(y). We define the Hodge cycle space as

B {0 € HuU,Q)| fyres () =0.45<j1<j <4}
_{56H UQ|f5res(f]>:O,A5<j,1§j§n+1}’
with U := {f =0} € D := {F =0} c P,

If X = M, it follows by Theorem that this definition coincides with the classical definition of
Hodge cycles (see equation (1.3). For instance, if X is defined by f =z +--- + 2 + :U%_H + 1.

HOdn(X, Q)o
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CHAPTER 2

Integration over joint cycles

The object of this chapter is to introduce a techniques to calculate periods. In we will describe
a particular basis of homology, namely joint cycles. We will give a formula for the integral on one of
these cycles, which will be used later in the calculation of periods on perturbations of Fermat variety.
In §2.2| we will express the cycles on an affine curve in terms of joint cycles. Finally, in we will
give a basis for the homology and cohomology of affine Fermat varieties and we will compute the
integral on these bases, which will naturally arise in the calculation of periods on perturbations of
Fermat varieties. The two main results of this chapter that we will use frequently in later chapters
are Theorem and Proposition The main references for this chapter are [Mov20, AVGZS8S|.

2.1 Joint cycles

Let h : C" — C be a holomorphic function with non-degenerate critical points and all critical values
are different, this means h is a Morse function. By Morse lemma, there is a local coordinate system
around every non-degenerate critical point p such that h(z) = h(p) + 23 + - -+ + 22.

Let v : [0,1] — C be a simple path such that v(1) is a critical value of h and () is a regular value
for t € [0,1). For the parameter ¢ near 1, we fix the sphere S(t) = \/v(t) —v(1)S™ ! in the level set
{h(z) = 7v(t)} where

Snil = (2’1,...,Zn)

n
szz =1, Imz; =0
j=1
is the (n—1)-dimensional sphere. This defines a family of (n—1)-dimensional spheres S(t) C {h = ~(t)}
for all ¢ € [0,1). Note that for ¢ = 1 the sphere S(¢) reduces to the critical point p.

Definition 2.1. The cycle 6 € H,,—1({h = 7(0)}) induced by the (n — 1)- dimensional sphere S(0) is
called vanishing cycle along the path ~.

Since the set of Morse functions is dense in the set of holomorphic functions, we can define vanishing
cycles for holomorphic functions with degenerate critical points. For more details see |[AVGZS8S,
Chapter 1,2]. Vanishing cycles satisfy the following fact: let h : C* — C be a tame polynomial
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Chapter 2 Joint cycles

with b € C regular value. The (n — 1)-homology group of the fiber over b, H,,_1(h=1(b),Z), is freely
generated by the vanishing cycles (see Chapter 1,2], §7.5]).

Let h € C[z] and [ € C[y] be two polynomials with = (z1,...,2n41) and y = (y1,. .., Ym+1)- Let
C denote the set of critical values of h (resp. Ca denote the set of critical values of [). We assume
that C; N Cy = (), which implies that the variety

M = {(z,y) € C"1 x C™|h(z) = I(y)}

is smooth. Fix a regular value b € C\ (C; U Cy) of h and I. Let 6y, € H,(h™1(b),Z) and oy €
Hp,(I71(b), Z) be two vanishing cycles and ts, s € [0, 1] be a path in C such that it starts from a point
in C1, crosses b and ends in a point of C' and never crosses C] U Cs except at the mentioned cases.
We assume that d1;, vanishes along ¢~! when s tends to 0 and o vanishes along ¢ when s tend to 1.

b

Figure 2.1: Joint of vanishing cycles

Definition 2.2. The cycle

01 % 0p = 01+ 02 := | J 1, X Sty € Hupmy1 (M, 2)
s€[0,1]

is called the joint cycle of d1; and 9, along t. We call the triple (¢, 1, 02) = (t, d1¢, d2¢) an admissible
triple.

We take a system of distinguished paths of ., where A. start at b and ends at ¢ € Cy U Cy (see
Figure . This means

1. Each path A. has no self intersection points.

2. Two distinct paths A, and A, meet only at their common origin A, (0) = b = A, (0).
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Integration over joint cycles

Figure 2.2: A system of distinguished paths

Let
L6261 e Hy(h ' (b),Z) and 6},02,...,68 € Hy ("' (b),Z)
be the corresponding vanishing cycles.

Theorem 2.1. Let h and [ be polynomials tame with disjoint set of critical values then Hy,4p,+1(M,7Z)
is freely generated by

5%*5%’ ZZl’ y [y .]:17 al/v
where we have taken the admissible triples
(A5l 0L 8) . e, dec
Proof. See [Mov20, Theorem 7.4]. For a local version see |[AVGZ88, Theorem 2.9]. |

Definition 2.3. Let w be a holomorphic (n + 1)-form and f be a holomorphic function in a region of
C"*tl. We define the Gelfand-Leray form 7 as the form w’ that satisfies w = df Aw'.

If p is not a critical point of f, the Gelfand-Leray always exists around p. Indeed, The Gelfand-Leray
around p of w = gdzi A --- A dxyyq is given by

w ngdxi A - ANdxy,
= (-1
“ = (1)

fanrl ’
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Chapter 2 Joint cycles

where g meromorphic function, and f;,_, is nonzero around p, with f, ., is the partial derivative of
f with respect to x,,41. Also, if {f = 0} is smooth, the restriction of o to {f = 0} does not depend
on the choice of the form w’ satisfying w = df A w’. Our main example of Gelfand Leray form will be

yr2ldy Ndz Y 1t dy
d(P(y) — 29) a

The following results in this section will simplify the integrals and will allow us to calculate them. For
a more extensive exposition see [Mov20, §13.8].

Proposition 2.1. Let h € Clz] and | € C[y| be two tame polynomials. Let w; be a (n + 1)-form in
C" and wy be a (m + 1)-form in C™*!. Let also (s, 615, d25) be an admisible triple and

w1 w2
Ii(ts) := —, Iy(ts) := —.
(t) /5 L ht,) /5 dl

Then

w1 N\ w2 /
= I (ts)lg(ts)dts.
/(Slb*t(SQb d(h - l) ts

Proof. First, note that

_ w1 w2
wl/\WQ—dh/\dh/\dl/\ dl

(b — AL w2
= d(h =) A 2 NdLA

this means that 2’(1}{\22) = gt Adl A %2 But over the joint cycle 61 * 0o we have ¢, = h(z) = [(y),
therefore

w1 A\ w2 w1 W2
_(—1)m/ N N
/(51b*t52b d(h B l) O1p*t02p dhdl

= (—1)m/t Iy (ts) Io(ts)dts.

For a polynomial h and ¢ € H,,({h = b},Z), consider

x’B X
p(5.0) = pl{h = b}.5.8) == [ ToE

Now, we describe how to reduce a higher dimensional integral to a lower-dimensional one. This
corresponds to [Mov20, Propositions 13.9 and 13.10]. The proofs given here are slightly different and
in a simpler language than those given in [Mov20)].
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Integration over joint cycles

Proposition 2.2. Let P(y) = P(y1,...,Ym+1) be a tame polynomial with b regular value of P and
g(z) = g(x1,...,2n4+1) be a quasi-homogeneous tame polynomial of degree d. Let 61 € H,({P(y) =
b},Z), 02 € H,({g(z) = b},Z) be vanishing cycles and t5, s € [0,1] a path in the C-plane which
connects a critical value of P to 0 (the unique critical value of g) with b € t5. We assume that ¢§;
vanishes along ¢! and &5 vanishes along ¢. Then

P({g=b}.5.62) VA 4 g
/ yealdy ndo ) PUETEDEY0) Ssiwss Laipazry. As ¢
d(P — - _ ;
01 %02 ( g) % fgl w Aﬁ eN

where 03 = b/9[¢,] — [1] € Ho({29 = b},7Z), q and ~y are given by the equality Az := >_7 (8 + % =
+1 ~

'%“1, and p(y,03) = bAﬁ*l%, in the first case. In the second case, 01 € Hy,,({P = 0},Z) is the

monodromy of §; along the path ¢, and @ is a m-form such that d& = PAs—1y®dy.

Proof. Let us first see that

2Pdx 2Pdx ts Ap—1 te A=l
neo= [ =) (5) e (5) 2

For this consider the biholomorphism

¢ A{glz)=b} +— {g(z) =1}
(xl, e ,$n+1) — ((%)vl/d T1, 0, (%)v""'l/d xn_H) .

Observe that d2; = (¢¢)«(d2). A straightforward calculation allows us to conclude equation (2.1). This
is also true for z7 since it is a homogeneous tame polynomial. Using the above, we have

/ y*zPdy A dx _ / (y*dy) A (xPdx)
51*“52 d(P_g) (51*,552 d(P_g)
= / I (ts)I2(ts)dts
ts
ts

“stto=n00 [ ()" niea

=p({g= 5}75752)/ts (tg) U L(t)dts

:5(({{5(1::[)6}};%7?3))/75Il(tS)Ig(tS)dts

_ p({g:b},ﬁ,éz)/ Y2y A dz
p({27 = b},7,03) Jo,s6, AP —27)

Which allows us to conclude the first part. For the second part, note that we cannot use the same
reasoning because we would divide by zero.
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Chapter 2 Joint cycles

By A d ag £\ A1
y-r-ay €z y-ay s
/51*t52 d(‘l _g) ({g } 2) ts 01,ts d‘l b

p({g = b}, 8, 62) PAs—lydy
o s —p dts Because P(y) = t4

_pU9=0}592) [ pas-tye g Because P(y) = t,
bAs—1 A

_pllo=pp) [ g
A

bAB_l

_ p({g - b}?ﬁv(b)

bAﬁfl

/N w By Stokes’ theorem,
01

where

U d1e € Hua(C™, P7H0),2)
s€[0,1]

is the Lefschetz thimble with the boundary 51. |

Remark 2.1. Here a fact that we use often and that the reader should know is: res (%) = ;—f. For

example, for Ag ¢ N, we can rewrite the formula in the previous proposition:

/ <yax5dyA dw) _ p({g=1b},8,8) / (y“ﬁdy/\d2>
res = res | =——— |,
61*t62 P - g p({zq = b}?’Y? 53) 61*t53 P - Zq

Proposition 2.3. With notations of Proposition [2.2| we have

/ res (WW> = (=) p({g=b},8,62)(Ag—1)l(k—Ag—1)!
51%102 (P —g)* = A[; 1(2k: S 5 f 7‘65( dj’ﬁ) k> Ag €N,
b‘ig f}kﬁ (15; J5, @1 k< AgeN,

where @7 is a m-form such that dy = (—1)* "1 (Ag — k + 1), P45 Fy2dy.

Proof. We introduce a new parameter s and observe that

1 okt / woo / w
(k - 1)' 8Sk_l U(Jl*téz) f - S 0'(51*t62) (f - S)k’

where o is the “dual” of the residue map (see Definition [1.1)). Now using this and the previous
proposition, for Ag ¢ N we have
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Integration over joint cycles

B1xed (P —g)* (k= D105" | _ Joorsss) P—5—9
p({g=10b},8,6) 1 9 Yy dy A dz
p({z7 = b},7,93) (k — 1)1 9sk=1] _, /a((sl*t(s@ P—s—20

_ p({g = b},5,02) (WW)
~ p({z7 = b}, 63) /” =y )

This proves the first part. Before continuing, note that

[ a= [ (geres (5
0s glsws - J5 as T\ P_s) )

where 15 € Hp({P — s = 0},7Z) and & is the m-form such that d& = (P — s)~1y*dy. Indeed

0 - 0 w
%élsw(s)_%L(gls)dPAP—s

9 ~ ~
=0 dP N w

= dP A 95— 4
/O'(gls) P —s (P—8)2

= gls asw res P_s .

In addition, in this case the second term on the right side is zero. For the k > Ag, successively

applying the above we have
/ res <yax5dy A dm) _ 1 okt / res (yamﬁdy A dx)
51*,552 (P - g)k (k - 1)' ask_l s=0 (51*152 P —Ss—= g
/~ w(s) By Proposition [2.2]
s=0 515

_ pllg = b}, 8.6 91
o i (5er=r5)
/ v wHres| - 72 .
s=0 gls 85 o P_ s

(k—1)lbAs—1 9sh—1
odo = (1) (A5 = 1)(Ag = 2)... (A — J)(P = 5)¥ 71y dy,

_ p({g =1}, 8, 83) 9!
Cobs Tk — 1)1 gskmAsTl

Using that

then

e <WW> () (g = ). B.02) (A — 1)) 9 A
01%¢02

fores (72%)
res
s=0 gls P -3

(P —g)* bAs—1(k —1)! dsh—As—1
_ (=DM p({g = b}, B,82)(As — DI(k — Ag — 1)! / ros ( y“dy )
B bAs—L(k — 1)! 5 ph—4s |
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Chapter 2 Cycles on affine curves

For the last case, we have

/ res (yo‘:):ﬁdy A dac) = 1 o / res <yaxf3dy/\dm>
O1%¢02 (P - g)k (k’ - 1)! Osk—1 s=0 J 515105 P—s—g

p({g = b}, B,02) k-1 / B .
- By Proposition 2-2
(k— D)l asF1| _, ngW(S) y Proposition 2.2}

8k72 ~
_ Py =0}, 5,02) / o w + res M
a bAﬁ_l(k - 1)' o1 osk-1 s=0 P—s s=0
bk — 1) J5 OsF 1| o
Observe that wy = % w satisfies the property of the statement. |

s=0

2.2 Cycles on affine curves

Let us consider M = {(y,z) € C?|zV = P(y)} with P(y) polynomial such that 0 is not a critical value
of P(y). We know that H;(M,Z) is freely generated by joint cycles. More explicitly, we take a system
of distinguished paths of A., where A. start at b and ends at ¢ € CU{0}, with b non zero regular value
of P(y) and C the set of critical values of P(y), see Figure Let

61,0%,..., 80 € Hy({P(y) = b},Z), 63,63,...,65 1 € Hy({z" =b},7)
be the corresponding vanishing cycles. Thus Hy(M,Z) is freely generated by
Siwd), i=1,...,m j=1,...,N—1,
where we have taken the admissible triples (A\gA.*, 8¢, 5%), c € C. In this case

iAc = [y/iAC - y%Ac]a 5%,\0 = [Z{,\O - Z%,\O]

and

o *yorsl 03 = U [ylixc(s) - y;/\c(s)] X [Z{Ao(s) - Z%)\Q(S)] € Hi(M,Z).
s€[0,1]

The projection of the cycle &} * AA L (5% in the y-coordinate induces a path o : [0,1] — C that connects
two roots of P(y) and passes through the critical point c.

2.3 Multiple Integrals for Fermat varieties

Let mq, mo, ..., muy+1 be integers bigger than one and consider the n-th affine Fermat variety
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Figure 2.3: A system of distinguished paths I1

Ly = {Jc € (C”“’g(a:) = b} c cH,

where g = &7 + - + 2, 71", and b nonzero. We denote L := L. Let

n+1
A" =S (t, - tpg1) € ]R{"“‘ t; >0,y t;=1
j=1
2n/—1
be the standard n-simplex and let (,,; = e ™/ be an my-th primitive root of unity. For a € I =
Iy X Iy X =+ X Iy, with I, = {0,...,m — 2} and a € {0,1}"*!, consider
Agta: A" — L
1 1
(t1, .y tne1) — (t{”l Cotar gt %111*“"“) .

The formal sum

o 1= Z(_l)z;'n:ll(l—ai)AaJra

a

induces a non-zero element in H,(L,Z). In fact
Proposition 2.4. The cycles {0, }aecr are a basis for the Z-module H,(L,Z).

Proof. See [Mov20, Remark 7.1]. The version in the language of singularities can be found in [AVGZS88,
§2.9]. The first to describe this base was Pham in [Pha65|. |

Consider the biholomorphism ¢y : L — Ly, (1, ,&np1) = (BY™zy, - b/ ™1z, 1) with
b'/™i is a fixed mj-th root of b. Let us consider 62 = (¢p)«(Ja). Thus

Corollary 2.1. The cycles {62 }acs are a basis for the Z-module H,(Ly,Z).

39



Chapter 2 Multiple Integrals for Fermat varieties

Now consider

n+1 1
( 1)] Tj——
No = % g Tjdxj (2.2)

with d/:-c: =dx1 N---ANdxj_1 ANdxjp1 A--- Ndxyq1. The differential forms 7, satisfy

Proposition 2.5. The set of differential forms {n,}ocs restricted to L, are a basis for the n-th de
Rham comohology H}/p(Ly) of Ly.

Proof. See [Mov20l, Proposition 15.2, Theorem 10.1]. |

In what follows we calculate the integral of the cycles and differential forms previously described.
This is a reproduction of [Mov20, §15.2]. We will need the multi parameter version of the beta function.

_ a1—1
Bl(ay,ag,...,an41) ::/nttl11 L. (:L—:il dti A+ Ndty,

_ T(a1)---T(ant1)
F(a + -+ ant1)

(2.3)

Re(al)a s 7Re(an+1) > 07

where I'(¢) is the Gamma function. The following proposition was first done by Deligne in [Del82| for
the classical Fermat variety with m; = --- = my41.

Proposition 2.6. Let g = 2" + -+ + 7", then

n+1l >
1 1 1
/ ng—AB(lBl—i_ 7“"671"’_ ’Bn—i—l"‘ )7
Aata my My, Mp+1
where
n+1 1 B 1
A= (=1)" - J+ (ajtaj)
o115 Hc
7=1
Therefore

(-1 a+1)(Bi+1) 0 (Bi+1) (51 +1 Brn+1 Bni1+ 1)
77 = n C J ! C ] ! PR ) :
/aa g T, E( )

ITi5 my M M1
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Integration over joint cycles

Proof. First, note that ng = ’”ﬁ . Therefore

Bd —1)n
P dx
/ ——7( ) / :r:f2 $£”$§n+11 mn+1+1d$ A ANdxy,
Agia dg Mn+1 Aaﬂ

H C BJ‘H)(C“J"'%

m
n—i—lj1

/ tﬁ1/m1 . .tﬁn/mn (tl/mn+l),Bn+17mn+1+1d(t}/m1) A A d(t}/mn)

B+l _ B+l 4 Bngitl
=\ / e A A S WARRRWAN/
1 1 1
=)\B <Bl+, e B+ , Pri1+ > By equation ([2.3)).
mi mp Mp+1

The above proves the first part. For the second it is sufficient to prove that

Z ( )Z”Jrl(l a;) H C 5J+1 (aj+ay) H C ﬁ]+1 aj+a])

ae{0,1}n+1 j=1

This is obtained by a simple inductive argument. |

Remark 2.2. Via the biholomorphism ¢ the periods of L; are given by

3 n+1 *8]*'1_ B
/ xPdx —bZ] ! 1/ x dx‘ (2.4)
st 5o

dg dg
With the notations in the above is rewritten as

ZnJrl ﬁ] +1

p({g = b}, 8,6) = b= i ' p({g = 1}, B, 6a)-

If Ag WT is easy to see that

p({zq = b}vaa 63) B p({zq = 1}’7763) ‘
The above tells us that in the case of the Fermat variety this quotient is independent of b # 0.

(2.5)
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CHAPTER 3

Hypergeometric periods

Until now we have seen how to calculate integrals of the residue of a form with pole of order one
over a joint cycle. In this chapter we will give a tool to calculate the integrals of differential forms
with pole of higher order. For this we will reduce the pole order of the differential form, which will
be explained in This is also know as Griffiths-Dwork method. We use another version of this
method in the affine chart taken from [Mov20]. Section is devoted to calculate periods using the
theory exhibited so far. Last section provides a criterion for when a differential form in the affine part
actually comes from a differential form in the compactification. This will be important to establish
that certain hypergeometric periods are algebraic. The general theory of this chapter is developed for
tame polynomials in [Mov20]. Here we will do more computations in our case f(z,y) = g(z) + P(y)
that are not included in [Mov20|, where g(z) = "™ + --- + 2 and P(y) is a polynomial with
discriminant non zero.

3.1 Pole reduction

Throughout this chapter we use y and x,; interchangeably. Let h(x) € C[z] be a polynomial in the
variables z = (x1,...,Zp4+1). We define the C-module

Cla]

V=55
(32 )1<i<nt1

)

called the Milnor module.

Definition 3.1. Let h be a tame polynomial. The multiplication by A induces a C-linear map in V},
with associated matrix A. We define the discriminant of h to be Ay, := det(A).

Let us consider f = g+ P with g(z) = "' +--- + 27’» and P = P(y) is a polynomial. Also
consider the Milnor module
Cle] _  Ciy
(@, dP)

)
ln
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Chapter 3 Pole reduction

whose base is given by
{xfl PP 0< B <my—21<j<n+ 1} - {x’ﬂ’yﬁn+1| (B, Bus1) € I} .

Using this base we can represent the linear maps Vy —f> Vi and Vp i Vp by the matrices A and B.
Note that

froalfybrer = pog/¥ybat in vy
Thus the linear map induced by multiplication by f, with fixed ', in the submodule
<a:/6/, :z/ﬁly, . ,az’*B/ym72> cVy

has as matrix B. Therefore the linear map V; i> V¢ has matrix

B 0 0 O
0O B --- 0 O
A= : : : :
0o 0 --- B 0
10 0 0 B

with B repeated N = [[;;(m; — 1) times. We have
Proposition 3.1. Ay = AZIX.
Proof. Note that Ap = det(B) and by the last expression of matrix A, the result is concluded. |

From now on we will denote A := Ap. In the case of one variable, the definition of discriminant
given above coincides up to multiplication with a constant, with the definition of discriminant given
in terms of the resultant. Thus, there are polynomials Q1(y), Q2(y) that

A:ng];+PQ2. (3.1)

Example 3.1. Our main case of interest is when P = y(1 — y)(A — y). In this case we have A =
A2(1 — \)2. The polynomials Q1, Q2 satisfying equation (3.1)) are given by

Q1(y) = axy® + by +cx, Qa(y) = —3ary + e,
with
ax =2\ =X +1), by=—(2X> = A = A +2),
ex=AM1—=X\)?2, ex=4X>—3\2 -3\ +4.

The following description of the differential form Adxz will help us to reduce the pole order of a
differential form with a pole along {f = 0}.
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Hypergeometric periods

Proposition 3.2. There is a n-form £
Adx = df NE+ fQadx, (3.2)
with Q2(y) as above.

Proof. First remember that x = (2/,y) and dx = dx1 A --- A dxzy, A dy. Consider

£ = Qi(y)da’ — Qa2(y)n' A dy,
where 7’ := Z?Zl(fl)i_lé—iid/sgg, with c?:;; s=dry ANdzo A+ ANdxi_1 Ndzipr A A\ dzy,. |

From equality (3.2), it follows that there are n-forms £z such that

Awg = df NEp + fQawg,
namely {g = B¢, Thus

AWB _ A NEpt fQaws 1 (dfﬁ —d( ¢s )>+Q2w5

i fi j—1\fi-1 fi-1 fi-1"

Using that d(2'%'n/) = Aga’? dz’, we have

, 0
dé-ﬁ = ,CE/B (ﬁn+1yﬁ"+1_1Q1(y) + anJrl Czaly(y)> dﬂfl A dy — AB/QQ(y)wB
= Bnt1Q1wg_(o,1) + (Q) — ApQ2)wg,

where 8 = (8, Bpy1), (0/,1) € I and Ap := > ", *B;n—tl Therefore in H)}t'(C"+1\U) we obtain the
following formula that allows us to reduce the pole order:

wgl 1] 1 dés n Qawp

flAalj-1\ ! fi-t
1 [BaniQuwp_orny + (@) — Ap@2)ws  Qawg
T @)
1 [ Ba1@Q1wWs—(0,1) _Ag Q) w
Al +(<1 j—l)Q”j—l)ffl]

Remark 3.1. If 8 = (4',0) then

98] _ L T k= As O] 2
5 = arig oy L L= 4@+ Q)]

Proposition 3.3. Consider
_ 1 /(Qiy) Ap
Ck =A ( L +11- 2 Q2(y) ),
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Chapter 3 Calculating periods

CiCy ... Ck_leH ce Cj

D! =
k k
Then for j > 3 and 8,411 =0, 1,2, we have
2 j—2 j-1 o1
wg]  Bnt1(Bnt1 — 1)Q3 13 =2 1 j—1—1 | W(B'Bns1-2)
SR =D SO Wi I DI S R
k=1 =2 k=j—l+1 -1
i1
ﬁn+1Q1 1\ WD) |, ] wg
pi~!| Y@=l | TT 0, 98
A Z i kr:[l ;

Proof. The above remark is just the case when 3,41 = 0. Let us look when 5,11 = 1 and the other
case is analogous. By pole order reduction and induction in the order of the pole, we have

wp| _ @1 Weo) oo wB
il T AG-1) ot T
j—2 j—2 j—2
Q3 w(a,0) 1 i—9\ W@ 0) wg
= Cr—— +Cjq | == D] =+ 1] o=
A<]—1>,}1kf “A;k f ,g‘“f
i—1 j—1
Q1 [ j-1) @0 wg
= = D Tl o=
2 (Ser) 5o e

3.2 Calculating periods

Let X be a desingularization of the weighted hypersurface D given by the quasi-homogenization F' of
f. Let the affine part U := {f = 0} C C"*! where f = g(z) + P(y), g(z) = 2" + 2b% + -+ + a7,
mj > 2 and P(y) : C — C is a polynomial of fixed degree m and with 1 as a regular value.

Let o € J =[]}, Im;, 65% € H,({g(x) = —b},Z) defined as in Let 01 € Hy({P(y) = b},Z)
be a vanishing cycle and ¢5, s € [0,1] be a path in the C-plane which connects a critical value of P to
0 (the unique critical value of g). We assume that &; vanishes along ¢! and §,,° vanishes along ¢ and
b € t regular value of P(y).
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Hypergeometric periods

wg / wg
res| — | = —
/él*tcS;b < f ) 51*,55511 df

_ (y*+1dy) A (2" da')
B /51*,55 b d(P + g)
p({g = -b},8,5.") / yPr12dy A dz
p({z7="0},7,03) Jsius, (P —29)

({9 b} ﬁ/> o )/ Bn+1 ,7—q+1
5 y YT dy
q p({zq b} Y 3) 61%403

p{g=-1}8.02Y [ 4.,
T qp({zr =13, %53)/ P(y)"5 dy. By (23).

Where 03 = bl/q[gq — 1] € Ho({z? = b},Z), with ¢ and ~ given by the equality Ag = % and
C :[0,1] — C is the path induced by the projection of the joint cycle d; #; d3 in the y-coordinate.

By Proposition

Remark 3.2. If there is another path £, that connects the same critical value of P(y) with 0 such
that 1 € , and when deforming it to path t, does not cross other critical values, we have

/ res <%> = / res (Ujﬁ) s
51*156;17 f (51*55;1 f

and the same is true of higher-order pole forms. That is why in what follows we will always put in
the integration domain the cycle & *; d,,*.

Consider P(y) =y(y —1)(y — A) with A € R and A > 1. Let ¢; be the critical value obtained by
the evaluation in P(y) of the critical point between roots 0 and 1, and ¢ : [0,1] — C; t(s) = ¢1(1 — s)
with s € [0,1]. Let o := [y1t — y2t) € Ho({P(y) = t},Z) be vanishing cycle along ¢; !, which satisfies
that dp¢1y) = [1] — [0]. Let d3; := tY/4¢, — 1] € Ho({z? = t},Z) be vanishing cycle along t,. In this
context we have

res 22 g = ~1},5',6,") Brnt1 ,7—a+1
/(so*tagl (f> ¢ ({27 =1}.7.65) / A
Py = ~11.B,05Y) [ g st
) /C P(y)
D

"¢ p({z1=1},7,03

plg =1} 504 sPntils(s — 1)(s —
p({z7 =1},7,63) / [s(s = 1)(s = \)]

- 1 ({g — _1}’6/’551) 1 sPrtifg(1 — s _3 rgﬂ S

q-p({27 =1},7,03) /0 [s(1=s)1 =]« d

g ({g__l} B/’ z;) v+1 v+1
p({z? = 1},% d3) B < + Bn+1, . )

+1 —qg+1 2(yv+1 1
F </7 + ﬁn+17 g ’ (’7 ) + ﬁn-ﬁ-l; >
q q q A

y—q+1

ds
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Chapter 3 Calculating periods

where equation was used in the last equality.

Now if ¢o is the other critical value of P(y). Let 014 := [y1t — y2t] € Ho({P(y) = t},Z) be vanishing
cycle along ¢;1 with ¢ : [0,1] — C; t(s) = c2(1—s); s € [0, 1] satisfying that &1y = [A] — [1] and again
let 03; := t'/9[¢, — 1] € Ho({29 = t},Z) be vanishing cycle along t,. We have

ws\ _ p{g=-1},5,6.") Bt Py L
/51*“;,11 e ( ! > g p({z7=1},7,63) /Cy () Yy

_ A =Dp({g=-1}8,6.")
q 'p({zq = 1}777 53)
1 —g+1 y—q+1
/ As+1— 81 0 [As—s)As+1—s—N)] 7 ds
0

y—gq+1 9y=q+l

(1) = =10 Tp{g=-1}8.0")
q 'p({zq = 1}777 53)

1 y—q+1 g+1
/0[1—(1—A)5]5"+1+ « [s(1—s)] @ ds

y—q+1 y—g+1
() = A=1* Tp({g= —1}3,6,421) (7+ 1 v+ 1) _

q-p({z9=1},7,03) q q

+1 —q+1 2(y+1
F(” PEAR SRR );1—A>.
q q q

Remark 3.3. The explicit calculations previously made are still valid if A is in a complex neighborhood
of Re(\) > 1.

+1
Remember that p({z? = 1},7,d3) = %%. The previous calculations are recorded in the following

proposition.

Proposition 3.4. Let f = g(z)+ P(y) be a polynomial with g(z) = 7" +z5%+- - -4z, m; > 2 and
P(y) =y(1 —y)(A—y), A > 1. Consider the cycles 6o := [1] — [0], 01 := [A\] — [1] € Ho({P(y) = 0},Z)
and t, the straight line connecting one of the critical values of P(y) with 0. If Ag ¢ N, we have

w )\AB/—I — _1 ) /75;1
/5 51 res <ﬂ> B p({g } ’ )B (AB/ + Bn-i-la Aﬁl) ’
0%t0q

y+1
/ ¢ —1 1 (3.4)
F (AB/ + /Bn-‘rlu 1- AB’) 2Aﬁ’ + Bn-&-l; )\) .
_ Aﬁ’ _ 2Aﬁ’_1 — /o s—1
/ res (UJ/B) — ( 1) (1 >‘) +1p({g 1}’5 75a )B (A6’7AB’) .
61*“3(;1 f g — 1 (35)

F(Ag,1—Ag — Bni1,24551 = N),
where
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Hypergeometric periods

841
n+yt o L— n
_ —1) T (a4 1)(Bj+1)  caj(B+1) B +1 B +1
=_1%.8 1:( pocd I G B :
o = 11881 = r:[( ; ) B(F

Now we want to calculate

/ res <u}§> s / res ("dg> .
50*“5,;1 f 51*“;;1 f

For this, we use pole order reduction (equality (3.3))), and repeating the previous calculation we have

/ e (“Jig) -3/ e [((1 ~A49)@) + QW) T + @) ‘”ﬁf“)’”}

= % - [((1 — Ap)Q2(y) + Qll(y))%; + 5n+1Q1(y)w5d}0’1)}
_r{g=-1}7, 5 ") / (1= Ap)Q2(y) + QL (y))yPr+127dy A dz
Ap({29=1},7,03) | /5,464 d(P — 21)

Ql(y)yﬁwl_lz”dy A dz] .
+ Bl / By Proposition 2.2
+ 51*t63 d(P - Zq)

ws) _p{g=-1}8,8.")
/H <f) = Ap({z = 1}, 7, 05)

/ (((1 — Ag)Qa2(y) + Q1(y))y + ﬁn+1Q1(y)>yB"“‘IZ”dy Adz
01%¢03

d(P — 29)

_p{g=-1}189")
Aq-p({z7=1},7,03) (3.6)

/5 5 (1= 45)Q2(v) + QL)Y + BarQu(y) )"+ 127~ dy

_ pllg=—13.5.05Y)
Aq-p({z7 = 1},7.55)

/C (((1 — Ap)Q2(y) + Q1(y))y + Bn+1Q1(y))y5”+1—1P(y)

y—

g+1

@ dy,

where C' is the path induced by the projection of the joint cycle §; *; d3 in the y-coordinate. In the
above, we could have used Proposition instead of Proposition Let us go back to our case of

interest when P = y(1 — y)(A — y). To continue our computations we need to know A, @1, Q2 that
satisfy equation (3.1). From Example let us remember

A=X(1-N% Qiy) =axy® + by +cy, Qa(y) = —3ary + ey,
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Chapter 3 Calculating periods

with
ax =202 = X+1), by=—(2X> =22 -\ +2),
cx=A1-X)? ey =4X—3\2 -3\ +4.
Thus using equation (3.6 and calculating we get

Proposition 3.5. In the same context of Proposition we have

wg _)\A/j/—i’)p({g _ _1}’51’5;1) B
/&ma <f2> g o B (Ag + Bni1 — 1, Ag) x

[ (Agr + Bng1 — 1)2
(245 + Bag1 — 1)2
(34p + Bpg1 — 1) ax+

Agr + Bny1 — 1 1
F | Ag 1— Az, 2445 c— 1 X
245+ By —1 g+ Bny1, 5,248 +5n+1,>\

(= Ager+ (1 + 5n+1)bx)

1
F (AB/ +5n+1 + 1,1 —A/j/’QAﬁ/ +ﬁn+1 + ]_; )\) %

1
+F <A/5' + Bny1 — 1,1 — A, 248 + Bry1 — )\) ﬁn+1c)\:| :

wg (=DM T A= 1) Pp({g = —1}, 8,55 Y)
/51*t5_1 res <f2> = NG o) B(Apr, Agr)x

[F (Ap, —(Ag + Bnt1), 24551 = A) (3Ag + Bng1 — 1) ax +
F (Ag, —(Ap + Bns1 —1),24551 = X) (1 — Ag)ex + (1 + Bpg1)by)
+ F (Ag, —(Ag + Brg1 — 2),2A351 = X) Bnyicn]

with

n+Aﬁ/

Sl (e o 1 41
p({g = ~1}, 8,671 = ¢ H((J“ (B5+1) cﬂ(ﬁf“)3<5l+ s )

Hg 17y j=1 my mpy

To illustrate a little more, let us see the result of the integral on a differential form with a pole of
order 3.

Proposition 3.6. In the same context of Proposition we have
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Hypergeometric periods

/ (Wﬁ) Mg = 1366,
So*t0q 1 f3 A2q 'p({zq = 1}77a53)
1
|:DlB(Aﬂ’ + /8n+1 + 2, Aﬁ/)F (Aﬁ/ + ,Bn_l,_l + 2, 1-— Aﬁ/, 2A5/ + ﬁn—i—l —+ 2, )\) —+
1
DoB(Ap + b1 +1, Ag) F (A,B’ + Bt + 11— Ag 245 + By + 1; A) +
1
D3B(Ag + Bns1, Ap) F <A5' + Bn+1,1 — Apr, 24 + Bnya; /\> +

1
D4B(AB/ + ﬁnJrl - 1,A5/) <A/3/ + /8”+1 Aﬁ’ 2A5' + BnJrl )\):| ,

wp) _ (DM T — 1) p(fg = 1}, 8,65
S 1r68<f3> - A% p((21 = 1).7.5) Bldg, 4z

[D1F (Agr,—(Ag + Bry1 + 1), 24551 — X) +
DoF (A, —(Ap + Bs1), 24551 — X) +
DsF (Ag,—(Ag + Bnp1 — 1),245;1 = X) +
DyF (Ag, —(Ap + Bns1 — 2),24551 = N)],

where

5]+1

H (g(aﬂ—l (Bj+1) e (8;+1) ) B <ﬁ1 + 17'”’ﬂn+1> |
j=1 mi mpy
Dy = (9A% + 345 — 2 — Bnt1(645 — 13)) ay,
Dy = (—ﬁAg, — 6Agby +22Agzex + 13by — 18ex — Bpt1(64by — 24z ex — 15by + 3ey)) ax,
D3 = (A%/eA +2A3by —3Agey — 3by + 26)\) ex+ by
— Bnt1 (6A/3/a)\c,\ + 13axcy — 2Agbrey — 2b§\ + 3b,\e/\) ,
Dy = —Pnt1 (3e>\ —2Agey — 2b)\) Cx.

Remark 3.4. Any such integral is expressed

wp o p({g = _1}a6/a5;1) Bt y— q+1
/51*t5—1 e <fj+1> - Aig-p({z7 =1},7,83) /CR(y,ﬁ) ~P(y) dy, (3.9)

with R(y, ) is a polynomial obtained by pole order reduction.
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Chapter 3 Pole increment

3.3 Pole increment

We start this section by giving a criterion for when a differential form in the affine part actually comes
from a differential form in the compactification. This criterion can be found in [Mov20, Proposition
11.4] or [Ste77, Lemma 2].

Proposition 3.7. If Ag = k € N, the meromorphic form U;—f has pole of order one at infinity. If
Ag < k € N, the meromorphic form L})—f has no pole at infinity.

Proof. First, note that d <25}J> = xavjda:j — vja:jxavrlda:o. Thus
X

0

X1 A Tn+1 Bn+l X1 Tn+1
o G () (@) nena (2

fk k
f 1 Tn+1
R T
x()l 9 9 ZOn—Q—l

Nlﬁ??(m)

1—kN+> 01 (B+1)v;

2 - (m’ofAJr fN(ﬂ?h--wan))k

NzPn 4

_ ~ k’
‘T[1)+(Aﬁ k)N (xﬂf + fN(Scla cee 7$n+1)>

with f: xév_lfo+:cév_2f1—|—- daxofn_o+ fn_1, Wwhere f = Ef\io fi with f; a v-weighted homogeneous
polynomial of degree i, fy # 0 and

n+1 vs
— Y% g
77(171]) = Z(—l)jﬁl'jdl'j.
7=0
If A3 = k € N follows from the previous equation that the meromorphic form ?—f has pole of order
one at infinity, likewise if Ag < k € N, U;—f has not pole at infinity. |

How to know if the meromorphic form ‘})—f, Ag > k comes from a form in the compactification? For
this, we increment the pole order and apply the previous proposition. To increment the pole order we
reproduce [Mov20, Proposition 11.3]. Consider 7 := 3"/ (—l)i_l%cifq?i and 75 = 2%7. Observe that
dng = Agwg, thus

wg  dng

fk _Agfk
1 [ kdf A
- (g a(R)).

Therefore in H#1(C"*1\U) we have
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Hypergeometric periods

wg k [df Amg
Lﬁ} A{ﬁ“]
k
T A

[fwwr(h—f)wfrd(f—h)/\nﬁ]

fk+1
and thus
7Fl T Ak FeF | |
where h is the last weighted homogeneous piece of f and satisfies dh Ni1g = hwg. In our case

h = g(x) 4+ ylesPW) = g™ ... 4 gn 4 yded(PW) If P(y) = ZT"” cjy’ with ¢, , # 0 we have

f* (A — k) JEL

Therefore, using the process of pole order increment, the meromorphic form L;k with Ag > k can be
written as a finite sum

mn 1
|:w5:| _ Ap Zj:(;rl (J— mn+1)cjw6+( )
Mnp41

450l

with A 5l <j k<ij ps= (ﬁl ,...,BLIH) and C; € C. Note that even when Aﬁz < j we can
1ncrement the pole order. We will stop the process of pole order increment the first time A < jis
satisfied.

Remark 3.5. For the polynomial P(y) = y(y — 1)(y — A) the pole order increment looks like

% - AB (1 + )\)w5+(0/72) — 2/\(,4.)5_1_(0/71)
f’f - 3(145 _ k) fk;+1 :

Therefore, we can write the meromorphic form :‘Z—f with Ag > k as a finite sum

[ } Y ¢ [%’*(0 ki) } (3.12)

with k < j and it is the first time that Ag, (o x;) < j. This means that Ag ;) < j and one
“B4(0' k1)
e
appears with j — 1 < A5+(0/,kj72)-

step before reaching (3.12]), the differential form
YB+(0k;—2)

iR

appears with j —1 < Ag, (o ;1) or the

differential form

Definition 3.2. A meromorphic form ?f is called good form if Ag < korif k< Ag ¢ N and the
meromorphic form written as in equation (3 , satisfies A gli <

Observe that a good form has no residue at infinity and hence it gives an element in H}(X).
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Chapter 3 Pole increment

Example 3.2. Consider f = g + P with g(z) = 22 + 2 and P(y) = > + ay®> + by + ¢ . The
meromorphic forms WT" with 8 = (0,82, 03), f2 = 2,5 and 83 = 0,1 are good forms. Let us see it for
B2 = 2, we can write

fl1 3(4s-1) f?
where 0/ = (0,0). If f3 = 0 then 1 < Ap, Agy(0r,1), Ag(0r,2) < 2 and the above equation corresponds

to equation (3.11). If B3 = 1, then 1 < Ag, Agy (1) < 2 and Ag (¢r,2) > 2. Therefore we apply again

the pole order increment to the meromorphic form % and we obtain

[wﬁ] Ap [—awBJr(O/,Q) — 2bwg 4 (or,1) — 30&)5:|

[Wﬁ] _ —adg(A5 +2/3) {_CMBHO’A) — 2bwp(0/3) — 3cw/6+<oc2>} N
f1 945 —1)(Ag —4/3)) f3
Ag [—2wﬂ+(0',1) - 30‘%}
3(4p —1) f? '

Wlth 2 < AB‘F(O/J) < 3, j = 2, 3,4
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CHAPTER 4

Families of varieties and Hodge cycles

This chapter is about generic Hodge cycles and some applications. In §4.1] we will introduce this
concept that capture those Hodge cycles that remain Hodge when doing monodromy along any path
in a family of varieties. We will consider a subspace of the generic Hodge cycles that allows an
elementary arithmetic definition, these are namely strong generic Hodge cycles. In we will give
an upper bound of the dimension of the strong generic Hodge cycles in some cases. In §4.3] we
will briefly describe the Hodge numbers and we will give some formulas for them. In §4.4] we will
find algebraic expressions involving hypergeometric functions using what has been developed so far.
Finally, in we will computationally verify the algebraicity of the expressions found in

4.1 Generic and strong generic Hodge cycles

Let X be a desingularization of the weighted hypersurface D given by the quasi-homogenization F' of
f = g(z) + P(y), where g(z) = 2" +--- +a, m; > 2, P(y) : C — C is a polynomial of degree
m = Mpy41. Let

m
T := {t = (to,...,tm) € C™" ¢, =1, A(P) # 0 where P, := Ztlyz}
i=0
be the space of polynomials of degree m with nonzero discriminant, and let

U= {(z,y,t) € C" x Cx T| fi(x,y) = g(z) + P(y) = 0}

be the family of affine varieties parameterized by T'. Thus the projection 7 : Y — T'is a locally trivial
C* fibration (see [Mov20, §7.4] and the references therein). We denote by U := 7~ 1(t) = {f; =0} C
C"*! and by X; a desingularization of D; := {F; = 0} € P(1*) where F} is the quasi-homogenization
of ft-

Definition 4.1. Fix tg € T', we say that §;, € H,(Uy,, Q) is a generic Hodge cycle if §; is a Hodge
cycle of X3, this means, ¢; € Hod,, (X, Q) for all ¢ € T" and ¢; is the monodromy of d;, along a path
on T that connects tg to t. We will denote this space by GHod,, (X}, Q)o.
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Chapter 4 Generic and strong generic Hodge cycles

On the other hand, as a consequence of the process of pole order reduction, we will observe
that there are Hodge cycles of X that are independent of the polynomial P. Indeed, if {5k}2”:_()2
are vanishing cycles, such that they are the basis for Hy({P = 1}) and {6, '}acs are the basis for
H,_1({g(z) = —1}) described in We also know that {dp * 0,1, ..., 0m_2 * 65 }acs is a basis for
H,(U,Q). This means, each ¢ € H (U7 Q) is written

Z with 08 =) “na k% 0,",  nax € Q, (4.1)

acJ
where J = Iy, X -+ X I, w1th Ly, ={0,1,2,...,m; — 2}. The condition of being Hodge cycle is
given by the vanishing of the following integrals

wg ,
/57“es<f]>, A5<j§5.

Using Proposition and equality (4.1) we have

/ P12 7dy N d
wg Y 2dy N dz
/Tes(ﬁ) W+1,1 (Z O‘kfl dg>/5k*tsms( (Po — 29)! )

with § = [¢, — 1] € Ho({2? = 1},Z), Ag = VTH ¢ N and 8 = (8, Bnt1). Therefore if

ano‘/_1 L;’Z =0 for k=0,...,m— 2,

/67“68 <C;f> = 0.

Observe that the above is also valid when Ag € N (see Proposition . Thus, we are tempted to
define a subspace of the Hodge cycle space, and which we will call strong generic Hodge cycles as the
image by the natural map of the following quotient

ana/ YE 0, V8 s.t. A5<Z,kelm}

3

then

{(nk e Q!

dg
acJ dar !
, (4.2)
{ c QI ana/lwﬁ'_o, V3 s.t. A5<n+1,k€Im}
acJ

where I = J x {0,1...,m—2} , 8= (8, Bn+1) andA[;:ZTfflM.

j=1 m;

Proposition 4.1. The following vector space is zero

{6eHn1({g=1},@>'/§°;§’=o, geif,

where J = Iy, X - -+ X Iy, with Iy, = {0,1,2,...,m; —2}. In particular the denominator of equation

(4.2)) is zero.
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Families of varieties and Hodge cycles

Proof. First, note that L‘;—Zl = np (see equation (2.2))) and remember that the set of differential forms

{Z—’;’ = na }5 area basis for the (n — 1)-th de Rham cohomology Hggl({g = —1}) (see Proposition
e

2.5). On the other hand by Poincaré duality we have

H" '({g=-1},Q = H "' ({g = -1},Q) = Hy-1 ({9 = -1}, Q).

This allows us to conclude the result (in the first isomorphism we use that the spaces are finite
dimensional). For the second part just note that Ag < n+ 1 for § = (£/,0) with 8’ € J and that
€ Hy_1({g = —1},Q) is written

§=> nady'; ne€Q

aed

Thus, by the above proposition, using Proposition and taking into account that

(oo <32}t

Aﬂ < g) B = (/Bl)/B’rH-l)}?

we define

Definition 4.2. Consider the Q-vector space

A= {(na,k) e Q!

wgr n
Zna’k/(gal dg =0, V3 s.t. AB < 2}

a€eJ

=< (nak) € QM Zna,k H C,%jj(ﬁj+1) =0, VBs.t. Ag < g
acJ 7=1

I - a;(Bj+1) n 1
= (nax) € Q' | Zna’k Hg‘mfj J =0, V4 s.t. Ag < 5 (-

. m
acJ 7=1

where I = J X Ip, = Iy X+ X Iy, X Iy, 8= (8, Bnt1), and Ag = Z;";l Bjn—tl The space of strong

generic Hodge cycles is the image of A under the natural map

A — HOdn (X, Q)O

(na,k) — 212—02 ZaEJ nmkék * (5;1:| . (4'3)

We denote this space by SHod,, (X, Q)o.
Remark 4.1.

e We don’t know if the natural map is injective.
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Chapter 4 Generic and strong generic Hodge cycles

e For tg € T and ¢t € T in a neighborhood of ¢y, the monodromy of 5};0 x0 1 € H, (U, Z) is given
by 6t * 6,1 € H, (U, Z) where 6% is the monodromy of 6;° in the family

Vi={(y,t) € CxT| P(y) =1}.
This implies that SHod,,(X3,, Q)0 C GHod,,(X¢,,Q)o. We don’t know when they are the same.

o Ifgla)=al™ + - +apr+ai, +a2 5+ -+ x>, with m; >3 then

g{na EQ“”

n m—1
o B;+1 1
Slleon R g2

acJ J=1

this means that the dimension of 4 depends on the number of variables with exponent greater
than 2, and therefore the same is true for the rank of the strong generic Hodge cycles space.

Remark 4.2. It is easy observe that

n m—1
a;(B+1) _ n 1
Z Ny H ijj ’ =0, Vﬂl s.t. Aﬁ/ < 2 m } , (4.4)

. m
acJ 7j=1

Az{m@e@”

-----

generic Hodge cycles Wlth ok = = acs MakOk * 5t

Example 4.1. The vector space A is computable. For example for g(x) = 23 +--- +22_| + 2) and
P(y) is a polynomial of degree 3, we have that the vector space % has a base {1,(o,(3,...,(},

where ®g(z) = 2%+ 23+ 1 is the cyclotomic polynomial. By a straightforward calculation we get that

nEpo = Nk3 = Nk
A={(n1,n) € Q¥ x Q¥ |njpy = ngy =ngr for k=01 p = Q%L (4.5)

N2 = ngs =0

Therefore, dim SHod,, (X, Q) < 4. Analogously if g(z) = 23 + -+ 22_5 + 2> _; + 28 and P(y) is a
polynomial of degree 3, we obtain

2
npo — No3 + N2 = —No1 — N4 + N1 — n14} ~ Q16

np2 — N13 + N1 = —Ne1 — N4 + N1 — N4

A= {(nm) €Q2 Q5

Thus, dim SHod,(X,Q) < 16. See tables and for more dimensions of A in several
cases.

In table we can see some values for the dimension of A for the variety X induced by g(z) =
i ‘—i—xid—i—xni +2" and P polynomial of degree m. It is believed that dim A = (m—1)(m, —1)
for m > 7. This leads us to the next conjecture:
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Families of varieties and Hodge cycles

Conjecture 4.1. Let X be a desingularization of the weighted hypersurface D given by the quasi-
homogenization F of f = g(x)+ P(y), where g(z) = 22+ -+x2_, 42" +2™ and P is a polynomial
of degree m. Then dim SHod,(X,Q) < (m — 1)(m,, — 1).
The explicit calculations in Propositions and [3.6] allow us to obtain:
Proposition 4.2. Consider the family = : U — T with
U :=A{(z,y,t) € C" x CxT| fi(x,y) := g(x) + F(y) = 0},

and T the space of polynomials of degree 3 with nonzero discriminant. For n = 2,4,6 each generic
Hodge cycle d;, such that d;, = 550 =D naé}? %65 in Uy for k = 0,1, is a strong generic Hodge
cycle.

Proof. For each t € T we have

ws
res | ——— 0, Ag<j
/& <<g + B)J) ’

where 6; is the monodromy of &;,. If Ag ¢ N, then up to a nonzero number we have

/5tres<(9+Pt >

(see Propositions [2.6] 2.3). As the integral of the right side is nonzero for P = y(1 — y)(A — y) (see

Propositions -, -, -, we have

Zna HC% (Bi+1) 0, Aﬁ < Aﬂ/ ¢ N.

aeJ j=1

1\3\3

Bt17dy A d
a; (8;+1) yor2vdy A dz
Sulle) [ it

ey j=1 8% %6

If Ag € N, then up to a nonzero number we have

/Bn+1d
a;(B;+1) Yy Y
res Ena”CJJ /7“68 ; )
/6t <(g+Pt > 5;2 (PtAﬁ/>

aed j=1

see Propositions 2.6} 2.3] Observe that the integral of the right side is over a 0-dimensional cycle. For
P = y(1—y)(A—y), a straightforward computation allows us to conclude that this integral is nonzero.
Therefore

Znanc% BJ—H Ag < g, Aﬁ/ eN.

acd j=1

We conclude that § is strong generic Hodge cycle. |

Before continuing let us list some general results.
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Chapter 4 Generic and strong generic Hodge cycles

m T 4 5 6 7 8 9 (10| 11| 12 |13 | 14 15 16 17 18 19 20
3 14| 8 |38 1123020 |66 |20 | 98 |24 | 26 32 46 32 86 36 | 126
4 21 [ 12 |39 | 18 | 45| 24 | 27 | 30 | 117 | 36 | 39 42 69 48 | 111 | 54 69
5 12 |16 | 52| 24 | 28 | 32 | 36 | 40 | 108 | 48 | 52 56 60 64 | 148 | 72 76
6 1512012513035 (40 |45 (50| 95 | 60| 65 70 75 80 85 90 95
7 18 124|130 (36|42 |48 |54 60| 66 | 72| 78 84 90 96 | 102 | 108 | 114
8 21 | 28 | 35142 |49 |56 |63 | 70| 77 | 84 | 91 98 | 105 | 112 | 119 | 126 | 133
9 24 132140 | 48 | 56 | 64 | 72 | 80| 8 | 96 | 104 | 112 | 120 | 128 | 136 | 144 | 152
Table 4.1: Dimension of A on the variety induced by g(z) = 23 + -+ +22_5 + 2], + 2™ and a
polynomial P(y) of degree m.
m M 8 9 (101214 | 1516 | 18|20 |21 | 22|24 |25 |26 |27 |28 | 30
3 6 4 11014 2 |12 6 |10 |14 | 4 2 |14 | 8 2 4 6 | 18
4 9 6 3 15| 3 6 9 9 9 6 3 |115] 0 3 6 9 9
5 4 8 4 112 | 4 8 4 |12 | 4 8 4 1121 0 4 8 4 | 12
6 5 |10 | 5 5 5 0 5 5 5 0 5 5 0 5 0 5 5
7 6 0 6 6 6 0 6 6 6 0 6 6 0 6 0 6 6
10 9 0 9 9 9 0 9 9 9 0 9 9 0 9 0 9 9
15 14| 0 (14|14 |14 | 0 |14 |14 |14 | O |14 |14 | 0 |14 | 0 |14 | 14
20 19,0 11971919 0 (1911919 0 [|19]19| 0 19| 0 |19 19

Table 4.2: Dimension of A on the variety induced by g(z) = 22 + -+ +22_; + 2™ and a polynomial
P(y) of degree m.
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Families of varieties and Hodge cycles

Moyl s le6| 789 10[11]12]13]14]15
mMp—1

4 148140 14] 414030016 |12
5 S|s8slslo|s8|o0[32]0[s8|0]|8]|s
6 14 8 380 |14]16|18] 0 [50] 0 |10 | 24
7 0ololo0|12]l0]0]0lo0]0]o0][12]0
8 148 140 30| 414|030 0]6 |12
9 41016042004 0]24]0]4]3s
10 1432180 |14] 466|022 0 | 1036
11 0ololo0]o]lolo]ol20]0]l0]0]o0
12 30 8 |50 0 |30 242200 ]98] 0 |14]32
13 0ololo0]o]lolo]lolo|ol24]0]0
14 6 | 8 10|12 6 | 4 |10] 0 [14] 0 | 26|12
15 1208240128360 [32]012]32

Table 4.3: Dimension of A on the variety induced by g(z) = 22 + -+ +22_, + 2, "' + 27 and a
polynomial P(y) of degree m = 3.

Moyl s 16|78 l9l10l11]12] 13| 14 15
Mp—1

1 2710]9]027]0 91027 01 9] o0
5 03]0]0]0]0[36]0]0] 0] 0 36
6 904509 18[9 045 0 9 |18
7 0lo0 |0 |54[0]0]0]l0]|0] 0 5] 0
8 270906309027 01 9] 0
9 0olo|18]o0]o 7200|180 0] 18
10 903909080901 9| 36
11 0]l0]0]loJlolO|0]9]|0] 0] 0]o0
12 2710 45| 027189109 0 9 | 18
13 0lolo0]0lo]ol0ol0|o0|108] 0] 0
14 90954909090 [117] 0
15 0361800 18[3|0 18] 0 | 0 | 126

Table 4.4: Dimension of A on the variety induced by g(z) = 23 + -+ +22_5 + 2, "' + 27 and a
polynomial P(y) of degree m = 10.
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Chapter 4 An upper bound

Proposition 4.3 (Deligne’s [Del82|). Let X be a smooth projective variety. If 6 € H,(X,Q) is
algebraic, then for every w € HJJ,(X/k):

1 _
—s €k,
e ),
where X /k denotes the variety over a field k C C.

This naturally leads us to the following conjecture, which is a consequence of the Hodge’s conjec-
ture:

Conjecture 4.2. Let X be a smooth projective variety. If § € H,,,(X;Q) is a Hodge cycle, then for
every w € HJL(X/k):

1 _
— €k,
e
where X/k denotes the variety over a field k C C.

In the 2-dimensional case the Hodge’s conjecture is true, namely

Theorem 4.1 (Lefschetz theorem on (1, 1)-classes). For X a smooth projective variety, every coho-
mology class w € HYY(X) N H?(X,Z) is algebraic. In fact w = np for some divisor D on X and np is
Poincaré dual of D.

Therefore the above theorem allows us to deduce

Corollary 4.1. Conjecture .2]is true for m = 2.

4.2 An upper bound

In this section, we will give an upper bound for the dimension of the space of strong generic Hodge
cycles in certain cases.

Theorem 4.2. Let X be a desingularization of the weighted hypersurface D given by the quasi-
homogenization F of f = g(z) + P(y), where g(z) = z{"* +--- + z', m; > 2 and P is a polynomial
of degree m.

i. Formi=---=mp_1=2and m>7

A Q™ m, even,
10 m, odd,

d—2 0

with generator v = (ng) which satisfies [[ejm, — ®ma (z) = 3 5gn; zJ where @}, is kth cyclotomic

1<e< TR

polynomial. Therefore

m—1 m, even,

dlm SHOdn(X) Q)O S { 0 My, Odd
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Families of varieties and Hodge cycles

ii. For my = -+ = my_o = 2, my_1 prime, ged(my—1,m,) = 1 and m,},l + % < %, we have
SHod,,(X,Q)o = 0.
ili. For m; different prime numbers, we have SHod,, (X, Q) = 0.
Proof. For the first part consider
et o+l 1 1
Ay m = {(nj) e Qmn! jz_:o n; 3P+ = 0, VB, s.t. = <3"m } .

Note that in this case, with g = 21 + -+ + 22_, + 2", we have A = A1 . Thus, it is enough to
prove that

~ ) Q my even,
Amn, _{ 0 m, odd.

For this, consider

1 1
=<1< —— 4.
Srivn,m { <e<my, (2 m) e|mn} (4.6)

and Qn,)(7) = Z;n:’lod n;xd. For each (nj) € Am, m and e € Sy, m it is satisfied that Qn,)(C) =0
because ;& < 2 — L. This means for each (n;) € Ay, n we have

H (I)mn/e(x)

ees'mn,m

Q(nj)(m)a

where @, is kth cyclotomic polynomial. The above implies that A, = Qmn—I=Nmnm yith
Nippom = D e, . P (%) and ¢ is the Euler’s totient function, via the isomorphism

»Amn,m = Q[x]mn_Q_Nmn,m

Mecsmym Pmn @)

(nj) —

On the other hand, note that for m > 7, we have that S, m = {1 <e< T e\mn}, and using that
2emy, $(Mn/€) = my we get

My —2 my, even,
my, —1 my, odd.

Nmn,m = {

this allows us to conclude the proof in the first case.
The idea of the proof of the second case is similar in spirit to the first case. Consider

" My, mo Mp—1

an717mn7m = {(nj) S an_l

mMp—2
i . 1 1 1
E n; APt =0, V8, s.t. bu ¥ <l——— } ,
=0
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Chapter 4 An upper bound

Mp—1—2my,—2

Z Z nij gl(ﬁn 1+1) ] 5n+1) =0,
j=

Ay ymnan = () € QUrin-1=Hma=)
1+1 +1 1
V(Bao, Bo) st Loty Pt 1
Mp—1 My, m
Note that in this case, with g = 2% 4+ -+ +22_, + 2,7 + 2", we have A = A7~ = As
ged(mp—1,my) = 1 and my,— is a prime number, we have [Q((m,, 1, Cm,) @ Q(Gm, )] = Mmp—1 — 1 and
therefore the Q(Cp, )-vector space Q(Cm, 1, Cm,,) has basis {1,Cm. ..., (mm~1 7%}, This implies that
Mnp—1— 2mn72 mp—2 )
2 Z RGN = 0 e Y ng QP = 0 for each 0 < i < mpoy — 2.
=0
Therefore

Ar s m = {(nm € QUmn-1=D(ma—1)

n—2
(ni; );n 0 € Bm,_imnms
for every 0 < ¢ <my_1—2

12

(an—1,mn,m)mn71_1‘

m

1 1
Smnflymn,m = {1 S e < My, (1 - - ) ; e|mn} (47)

mMp—1 m

From the above, it is enough to prove that By, | m, m = 0, when miq +1< % For this, consider

and Qn,) () = Z?Zlod n;x?. Thus for each (n;) € Bm, ,.mnm and e € Sp,
Q(n;)(C°) = 0 because ;= <1—

mn,m it is satisfied that

n—1,

— L. This means that for each (n;) € Bp,,_, m..,m We have

H mn/e( )

@esmn_l.mn,m

Mmnp—1

) (%),

where ®;, is kth cyclotomic polynomial. The above implies that By,, | m,m = Qm"_l_N’"nfl’m"’m
with Ny, 1 mnm 7= D e S vmim P (%) and ¢ is Euler’s totient function, via isomorphism

an_l,mn,m — @[x]d—Q—Nmn,l,mn,m

Mocsm o @)

(n;) —

The condition —— + =~ < 3 guarantees that S, 1 ,mn,m = {1 <e< e\mn}, and using that

deapld/e) =d we get Nmn_l,mmm =my, — 1. Thus By, ;. mum = 0.
It remains for us to prove the third case. For this consider
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A(mj) = {(na) e Q!

n a'(ﬁ"’_l) n 1
ZnaHCm]j J =0, \V/B/s.t. A5/<_m}’

, 2
acJ j=1

where J =[] I;, Im; = {0,1,...,m; — 2} and Ag = >0, ﬂjntl. Observe that A = AZ;;% It is

sufficient to show that A(mj) =0. As mq,...,m, are different primes, we have
QGmrs -+ -+ Gmn) = Q¢m,) and [Q¢ym,) Q) = [ [ (m; —1).
j=1

Moreover note that if a # @, then []7_; iy # [T Cfnjj Therefore the Q-vector space Q(Cmys - - - 5 Gy, )
has basis {H?:l G, }aej. This implies that

n
ZnaHC%jj =0<=n, =0 for every a € J,
acJ j=1

but the above is one of the conditions that satisfy the elements of A, ), with B =(0,...,0). |

The proof of Theorem also provides a method to calculate the dimension of A,,,, , when m <7

and the dimension of B, | m, m when ﬁ + % > % With this, we obtain:

Corollary 4.2. Let X be a desingularization of the weighted hypersurface D given by the quasi-
homogenization F of f = g(z) + P(y), where g(z) = z]" + -+ + 2", m; > 2 and P is a polynomial
of degree m.

i. Formi=---=mp_1=2andm=2,...,6

dim SHod,,(X,Q)g < (m — 1) Yoo e |,
2<d<[ ;2 |
dlmny,

where ¢ is the Euler’s totient function. When m = 2 means that 2 < d < m,, and d|m,,. Therefore
for m = 2, dim SHod,, (X, Q)¢ < (m, — 1).

ii. Formy =---=my_o =2, my_ prime, ged(m,_1,my,) =1 and qu + % > %, we have
dim SHod,, (X, Q)o < (m — 1)(my_y — 1) > o(d) |,
2L

dlmny,

where ¢ is the Euler’s totient function.
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Proof. With the notations of the proof of Theorem we have that A = A7~L and Ampyom =

My, M

Qmn—1=Nmum wwith Nppym == ZeESm P ("2") , where S, ,, is defined in 1) Observe that

m
]
e¢Smy,m

elmn

Therefore

dim(A) = (m—-1)| Y ¢<%) 1

mn(%_%)§e<m'ﬂ
elmn

where d = 7. This proves the first part. For the second part, we know from the proof of The-
orem that A = B%j?éﬂ%rl) and By, 1 mam = an*l*Nmn—lvm“*m with N, impm =
EeGSmn_l,mn,m % (%) , where Sy, | m.,m is defined in (4.7). With this, we proceed as in the first

part. |

Remark 4.3. The bound of Corollary depends on m, modulo some integer that depends on
m and m,_1. For example: let X be a desingularization of the weighted hypersurface D given by
quasi-homogenization F of f = g(z) + P(y), where g(x) = 23 + 25 + -+ + 22_; + 27 and P(y) is a
polynomial of degree 4. We have

0 my,=1,5"711(12),
3 m,=2,10(12),
dim SHod,,(X,Q)p < ¢ 6 m, =3,9 (12),
9 m,=4,6,8(12),
15 my, =0 (12).
One more example: let X be a desingularization of the weighted hypersurface D given by quasi-

Mn—1

homogenization F of f = g(x)+ P(y), where g(z) = 23 +23+---+22_,+z) "' +27, (Mp_1,my) = 1
and P(y) is a polynomial of degree 3. We have
for m,,_1 = 3,

dim SHod,, (X, Q)o < {
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0 m, odd
8 m, even

dim SHod,, (X, Q)o < { for mp_1 = 5.

A small reflection on the proof of the third part of Theorem allows us to deduce

Corollary 4.3. Let X be a desingularization of the weighted hypersurface D given by the quasi-
homogenization F of f = g(z) + P(y), where g(z) = 21" +--- + a» and P(y) = y™+* + 1. If m;,
j=1,...,n+ 1, are different prime numbers, then Hod, (X, Q)y = 0.
Proof. Let us consider top = (1,0,...,0,1) € T. In this case fi, = z|" + -+ + z]' + y™+ + 1, and
we can write equation (3.3)) as

YBl_ o |YB

5o 7

with Cj € Q. If Ag € N and Ag < j, then C; = 0. With this and using Proposition and we
have in the definition of Hodge cycles (see Definition

w

. on|
{56 Hn(UtoaQ)’Ares <ff> =0,4p<j,1<j< 2} = Aimy),
to

where "
A(m]):{(nQ)EQll ;nal_[lcmjj J —0, Vﬁ s.t. A5<2,AI3¢N},
a ji=

where I = H;Lill L,y Im; = {0,1,...,m; — 2} and Ag = Z?ill Bint . Similarly, as in the third part
of the proof of Theorem {.2 we have A(mj) = 0, when my,...,my41 are different prime numbers.
In conclusion Hod, (X4,,Q)o = 0, where Xy, is a desingularization of the weighted hypersurface Dy,

given by the quasi-homogenization Fy, of f;, and m;, j = 1,...,n+1 are different prime numbers. W

4.3 Hodge numbers

With the notations from the previous sections, let us consider tg = (1,0,...,0,1) € T. In this case
frto =" 4+ -+ ap +y™+1 + 1. The affine Fermat variety {f;, = 0} has a sequence of numbers
related to the Hodge numbers of the compact smooth underlying variety X;,. Namely

hlgfl,nkarl — #{ﬁ c I| kE—1< A/B < k‘}

. k—1n—k+1 —k41,k—1
These number are symmetric, hy " = hg +h

formation

, since the set I is invariant under the trans-

B— m—B—=2:=(m1—B1—2,....,mps1— But1 —2),
and therefore A,,_3_o = n+ 1 — Ag. These numbers satisfy h*? = kb7, for p # ¢, where P4 =

dim HP4(X). In the remaining case h2'2 —hg’? depends on the desingularization of Dy,. This can be
deduced from Example For more details see [Mov20, §15.4]. The Hodge numbers do not change
when the complex structure is varied continuously. More precisely
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Theorem 4.3. Let 7 : XY — B be a family of complex manifolds (i.e. 7 is proper and submersive)
and assume that Ay is Kahler for some 0 € B. Then for b in a neighborhood of 0 in B, the Hodge
numbers of &} are the same as the Hodge numbers of Aj.

Proof. See [Voi02, Proposition 9.20]. [ |

The above theorem implies that the numbers hlg_l’n_kH are the same for every ¢t € T in the

fibration 7 : U4 — T.

Let X be a desingularization of the weighted hypersurface D given by the quasi-homogenization
Fof f=g(x)+ P(y), where g(z) = a{" + -+ ap» + a2 + a2, o+ -+, and P(y) is a fixed
polynomial of degree m. Observe that % < Ag and this implies that hlg_l’n_kH =0= hg_kﬂ’k_l
for k < L%J For example if g = 2% + -+ 22 [+ a2 org=a + - +22 5+ 2" " + 2™, the
sequence of numbers are surface-like:

In other words, the Hodge structure of H"(X,Z) has level 2. Further, if hg’o, h(l]’1 are the corresponding

_ . 2 241,2-1
Hodge numbers for go = 23 + 25" or go = x]"""" + 5™ respectively, we have hO’0 =hs '? and

1,1 55
hy" = hi’?. In some cases we can calculate the Hodge numbers. For example

Corollary 4.4. Let X be a desingularization of the weighted hypersurface D given by the quasi-
homogenization F of f = g(z) + P(y), where g = 2% + --- + 22 _; + 2 and P(y) is a polynomial of

degree m,,. We have

My (Mp—6)

FHLE-1 _ p5-lgHl _ ®
0 -0 -

+1 m, even,

7(7“”“)8(7””75) +1 m, odd,

3m2 —6 4
M Mn T2 4m"+ m, even,

»|3

>
Cwl3
I

(i D)Gmn 1)y odd.

Proof. First, note that it is enough to prove it for the case n = 2. Let us see one case, the others are
analogous. Suppose m,, even, thus
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ho' =#{BeI|1< A5 <2}

=#{Bel‘n;"—2<62+63<3m”—2}

2
Mp—2 San_E}
= > (G+D+ D @ma—-3-))
j:%—l j=mn—1
mp—2 mp—2
= D G+ D
j="m 1 j="
_3m%—6mn+4
- 1 ,

The variety induced by f = g(z)+ P(y), where g = 22+ --+22_, +2% and P(y) = y(1—y)(A—y),
will be used constantly in the next section. In the following corollary, we calculate their Hodge
numbers.

Corollary 4.5. Let X be a desingularization of the weighted hypersurface D given by the quasi-

homogenization F of f = g(z) + P(y), where g = 23 + --- + 22 _; + 2 and P(y) is a polynomial of
degree 3. We have

41,21 n_124] my, — 1
2 2 J— 2 72 .

6
REE g oy |2 VLJ
0 " 6 6
Proof. The proof is similar to the previous corollary. |
N M| g 9 10 11 13 14 17 19 20
3 (1,12) [ (1,14) [ (1,16) | (1,18) [ (2,20) [ (2,22) [ (2, 28) (3,30) (3,32)
4 (1,17) | (2,20) [ (223) | (2,27) | (3,30) | (3,33) | (4,40) (4, 46) (4,47)
5 (2,24) | (2,28) | (2,28) | (4,36) | (4,40) | (5,42) | (6,52) (6,60) (6,60)
10 (6,51) | (6,60) | (6,61) | (10,79) | (11,86) | (12,93) | (15,114) | (16,130) | (16,131)

with P(y) is a polynomial of degree m.




Chapter 4 Strong generic Hodge cycles and hypergeometric function

N d 8 9 10 12 13 14
3 (2,24) | (2,26) | (3,30) | (3,36) | (3,40) | (4,44)
4 (4,34) | (4,40) | (5,44) | (5,50) | (8,56) | (8,62)
7 (9,66) | (10,76) | (11,86) | (15,102) | (16,112) | (18,120)
8 | (11,76) | (11,90) | (14,98) | (16,116) | (20,128) | (21,140)
12 | (16,116) | (20,134) | (22,152) | (24,174) | (34,196) | (35,214)

Table 4.6: Hodge numbers (h%“’%_l, hg’§> of the variety induced by f = 2%+ -+ 22
' 4+ P(y) with P(y) is a polynomial of degree 3.

4.4 Strong generic Hodge cycles and hypergeometric function

In the rest of the document we will use d instead of m,,. The proof of Theorem provides us with a
method to find strong generic Hodge cycles explicitly in the cases described. In the 2-dimensional case,
by Lefschetz (1, 1) theorem each Hodge cycle is algebraic. But the algebraic cycles satisfy the property
of Proposition Thus, we can find algebraic expressions involving hypergeometric functions using

Proposition [4.3] and the following fact

Lemma 4.1.

B(l ﬂQ;‘l)B(%_‘_ﬁQ;l +k’%+52+1) B
€ Q,
T
with k € Z and (2 € N. Additionally
1 1 Bntl 1 Bntl 1 Bn+1 1 Bnt+1
B(E""?E’ a )B(Aﬁ/JrkvAﬁ') _QB<2, )B<§+T+k7§+ a )

|3

s

where Ag = ”T_l + Lot

d

1

. In particular, the last expression is algebraic.

Proof. It is enough to prove it for k = 0 since B(a +1,b) = ;43 B(a, b).

1 Br+1
B _
(5™

For the second part consider

70
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d

d
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-2 +xn_1 +
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EA Y

r (1200
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d
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Families of varieties and Hodge cycles

ol Batl 1 Butl 1 Batl
D_B<2’ d >B<2+ a2t 4 )

therefore

X
2

X
2

I

H"r (BT (A
B<1 “;5714‘1)3( Ay) I (3) ;(EAZ/))F( 5)

n_9 i
= 1) w2 "D.
H] 1 < (Bn'f’ +]>

In the above we have used that I'(z + k) = H] “o(2+ 7)[(2). This implies that

B (5,5 2 B (Ag, Ag)

€eQ
u

In most of the following results, we will have the hypothesis that Ag ¢ N. This assures that
hypergeometric functions appear within the computations of the periods (see Propositions
. In the 2-dimensional case every Hodge cycle is an algebraic cycle by Lefschetz (1,1) theorem.
Thus, we can deduce the following result

Proposition 4.4. Let X be a desingularization of the weighted hypersurface D given by the quasi-
homogenization F of f = g(x) + P(y), where g(z) = 22 + 24 and P(y) = y(1 — y)(A — ). Consider
WTﬁ a good form (see Deﬁnition with Ag = % + 52;1 ¢ Nand 8= (8, 83) = (b1, 52, 03). Let

d—2 d—2
80 = an’oéo * 5;1, ol = an,1(51 * (5J_1
j=0 §=0
If 6° and 8! are generic Hodge cycles then either
d—2 ‘
Sk k=01 (4.8)
is zero or
1
F (A,B’ + B3, 1 — A,B’, QAB/ + Bs; )\> and F (14/3/7 1-— A/g/ — B3, 2A5/; 1-— )\)

are in @
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Chapter 4 Strong generic Hodge cycles and hypergeometric function

Proof. The fact that WT is a good form means that res (ﬁf) € H37,(X/Q) (see Proposition .

Therefore by Lefschetz (1.1) theorem and Proposition [4.3| we have

if § is a generic Hodge cycle. The above integral is computed in Proposition and using Lemma
the result is obtained. |

Now, as an application we will re-obtain results already shown by Schwarz in [Sch73] (See [Beul0),
BH89] for some generalizations.)

Corollary 4.6. The following expressions are in )

F<5 ! /83a77 ) < B37;71_)\>
7
3

5 15 1 —1 1
Fl2 -2 S
<6+ﬁ37673+53a)\>7 ( /837 6 ) +B3a >a

with Bg = 0, 1.

Proof. We will give two proofs: The first one using the theory developed so far and the second one
using classical theory of hypergeometric functions. For the first proof let X be a desingularization of
the weighted hypersurface D given by quasi-homogenization F of f = g(z)+P(y), where g(z) = 23+
and P(y) : y(1 —y)(A —y). Consider

51:n0(61*661+51*5:;1+61*5gl)+n1(51*5f1+51*5Z1+51*5;1),

which is a strong generic Hodge cycle (see equation (4.5). Now, take 5 = (0, 82, 33) with f2 = 2,5. In
this case the differential form WTB is a good form (see Example and observe that

no (9 4 G 4 QD) oy (Y 4 P 4 D) 0,

Therefore, using the previous proposition we obtain the first two expressions of the corollary. To
obtain the last two, we consider the same 3’s and the following strong generic Hodge cycle

6% = ng(do * 05 1+ S0 % 651 + 80 * 05 ) + m1 (S0 * 6y L 4 G x5y 1+ o % 671,

Let us continue with the second proof. The hypergeometric function F(5/6,1/6,5/3; z) is contiguous
(see Definition to F'(—1/6,1/6,2/3;z) which has angular parameters (1/3,2/3,1/3) and this
triplet is in Table Therefore applying Corollary we have the first and the third equations
of corollary are algebraic. The same argument is valid for the other two equations, observing that
F(7/6,—1/6,7/3; z) is contiguous to F'(1/6, —1/6,1/3; z) which has angular parameters (2/3,1/3,1/3).

|

The property in Proposition would be also true for Hodge cycles if the Hodge conjecture is
true. Deligne has proved this property for Hodge cycles in the usual Fermat variety, even though the
Hodge conjecture is unknown. More explicitly
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Proposition 4.5 (Deligne’s [Del82]). Let X be a smooth projective variety defined by x4+ - ‘—i-:cf,lLH.
If 6 € H,»(X,Q) is a Hodge cycle, then for every w € HJ,(X/k):

! €k
@riym2 [;4 55
where X /k denotes the variety over a field k C C.

In this same direction, we have the following result

Proposition 4.6. Let X,, be a desingularization of the Weighted hypersurface D,, given by the quasi-
homogenization F, of f, = gn(x)+P(y), where g,(2) = 23+ -+22_; +2¢ and P(y) = y(1—y)(A—y).
Consider % f a good form (see Deﬁnition with Ag ¢ N. If 6 € H,,(X,,,Q) is a strong generic Hodge

cycle, we have
1
(2mi)"/? / e <fn> =)

Proof. The main idea of the proof is to use Lefschetz (1,1) theorem in the 2-dimensional case and to
construct the n-dimensional integral from the 2-dimensional integral. Consider (ng;) € A, where A is
defined in (4.4). This element induces the cycle

5" = 6" 4 5 = anoao*a +Zn3161*6n,,

with 4, } € H,—1({gn = —1}), which in turn induces a strong generic Hodge cycle. We know that
8" is a strong generic Hodge cycle if and only if 679, 6"! are strong generic Hodge cycles (see Remark
) Now consider the differential form % with 3 = (0, Bn, Bn+1). Observe that f f for n = 2

d that § —1 < Ag = A + 5 — 1 for each f. An analy51s similar to the proof of Proposition

allows us to deduce that 1f f—n is a good form then E is a good form. Now, by Proposition up to

multiplication by a nonzero element of Q(\) we have

d—2
1 wg 1 J(Bn+1) 1 1 Br+1
= = E j " Bl—-,...,=,
(oni)F /5"0 re (fn) (23 < 15,0Cy B 5 d X

0 (4.9)
1
B (Ap,Ap) F (Aﬂ’ + Bpt1, 1 — A, 24 + Bpir; A) '
On the other hand, up to multiplication by a nonzero element of Q(\)
1 ws 1 (& j(Bn+1) 1 Bnt1
o J a0 TE <f> o | 2 oG B<2a ] )X
i i
620 2 j=0 (4.10)

1
B (A, A5 ) F (AB, t Busrs 1 — Ay, 245 + Bus A) :
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Chapter 4 Strong generic Hodge cycles and hypergeometric function

Since 620 induces a strong generic Hodge cycle of Xo, by Lefschetz (1,1) theorem, 6?0 is algebraic. By

Proposrtron we have that 5 f 520 T€S <J e QA ) If the integral in is zero, then equation
is zero. If it is not zero, then Lemma

of equatron 4.10) is algebraic over Q(X). As Ag = Aj B +5 -1 and =2 75 is a good form we have that
the functions

1| allows us to conclude that the hypergeometrlc function

1

1
) , F (AB’ + Bnt1,1 = Ap, 245 + Brya; )

F (AB/ + Bnt1,1 — Apr, 245 + Braa; 3 3

are contiguous and irreducible (see Definitions respectively). Therefore the hypergeometric
function in equation (4.9) is also algebraic over Q(A) (see Proposition[A.2). Now using Lemma [4.1] we

conclude that
1 wg —
(2mi)2 /(sno (fn) QY-

The same reasoning is valid for the integral ﬁ J sn1 TES <f—5), which allows us to conclude the

result.

Remark 4.4. Perhaps it is possible to prove an analogous result for the family f, = g,(z) + P(y),
where gn(z) = 27" + -+ 2, "7 + 2™ and P(y) = y(1 — y)(\ — y) using the similar ideas developed
in the appendix of [Del79] by Kobhtz and Ogus.

As a consequence of Proposition we have that Proposition [£.4] is true in the n-dimensional
case not only in the 2-dimensional case. This fact is recorded in the following corollary.

Corollary 4.7. Let X be a desingularization of the weighted hypersurface D given by the quasi-
homogenization F of f = g(z) + P(y), where g(x) = 22 +---+22_; +2¢ and P(y) = y(1—y)(A —y).
Consider WT*B a good form (see Definition with Ag: ¢ N and let

d—2 d—2
0 _ , -1 1_ A —1
0 = g nOJ(SO*(Sj , 0 = E m]él*dj
Jj=0 Jj=0

If 6° and &' are generic Hodge cycle then either

d—2 )
anjéﬁ(ﬁﬁl), k=01
=0

1S zero or

1
F (Agl + /Bn-i-la 1-— Alg/, 2A5/ + /Bn-i-l; )\> and F (Aﬁ/, 1-— Alg/ - Bn—&-lv 2145/; 1-— /\)
are in Q(\).
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The argument in Proposition does not work for a differential form with pole of order greater
than one. However, we can still get a similar result using the same ideas with an extra hypothesis.

Proposition 4.7. Let X be a desingularization of the weighted hypersurface D given by the quasi-
homogenization F of f = g(z) + P(y), where g(x) = 22 +---+22_; +2¢ and P(y) = y(1—y)(A —y).
Consider ‘})—f a good form such that WTE is also a good form, and Ag ¢ N. If § € H,(X,Q) is a strong

generic Hodge cycle, we have
1 wg —
— — | € Q).
(27Ti)n/2 /(;TBS <fk) Q( )

Proof. Consider (ny;) € A, this element induces the cycle
d—2 d—2
§ =20 + ol = Zn]‘70(5@ * 5]_1 + anJ(Sl * (5]-_1,
§=0 §=0

with 5;1 € H,—1({g = —1}), which in turn induces a strong generic Hodge cycle. We know that ¢ is

a strong generic Hodge cycle if and only if 6%, are strong generic Hodge cycles (see Remark .
By Proposition up to multiplication by a nonzero element of Q(\) we have

d—2 B(3,....3, 1) B (A, Ap)
1 wg i(Bn+1) <27 120 d BB 1
NES \/5\0 res () = Zn],OCZ[ F a, ba C; X ) (411)

(2mi)z f = (2mi) 2

where a = Ag + Buy1, b = 1 — Ag, ¢ = 2Az + By41. The fact that w75 is a good form implies

that F (a, b, c; %) is irreducible. An inductive argument allows us to prove, up to multiplication by a

nonzero element of Q(\) that

1 o\ (&, o) Pl b5 B A
_ res B — njO ](/37L+) X
(271) 2 Jgo f* = d (2mi)n/2

Z CJ()\)F (aj, bj, Cj; 1\) y
J

with I’ (aj, bj, ¢ %) contiguous to F (a, b, c; %) and Cj(A\) € Q(A). The first inductive step is for k = 2.
In this case we use Proposition For the general case we apply pole order reduction (see )
and then the inductive hypothesis. Note that if the integral in is zero, then integral in is
zero. Now, suppose that 6° is a strong generic Hodge cycle and that the integral in is nonzero.
By Proposition and Lemma we have that I (a, b, c; %) € Q(A). Therefore F (aj, b, ¢j; %) are
algebraic over Q(\) (see Proposition . With this and using Lemma we conclude that is
algebraic over Q()). The same is valid for the cycle 6'. |

(4.12)

Remark 4.5. Under the hypotheses of the previous proposition, the proof tells us that the hyperge-
ometric functions that appear in the integral W / sTes ‘;—g are algebraic.

75



Chapter 4 Strong generic Hodge cycles and hypergeometric function

In the 2-dimensional case, the previous result is independent of the hypothesis that WTB is a
good form. What will be the nature of the hypergeometric functions that appear in the integral
ﬁ f(sj res (‘;—f) , j = 0,1, when :‘Z—ﬁ is a good form and WT’B is not a good form? Exploring these
integrals with k£ = 2 we obtain:

Proposition 4.8. The following expressions are in Q(\) :

4 48 2 (4 18
Fl=,—=-1— 2 A4+1)—-ZF(=,—=,=;1— 1) (5A2% — 4.1
0+#£6 (3, ot )\)(A Al =2 <3, 33 A)()\+)(5)\ 8A+5), (4.13)
2 24 2 (214
QF (=, ==, i1 —=X) —ZF (=, o, 551= M) (A +1 4.14
o2 (52 51-0) - 2P (33.51-0) 0+, (a.14)
2 4 1./2 24
0 #£4F ( =, §,7;1—/\ N =X+ —F (2, =2, 1= A) (A +1) (8N — 11X+ 8)+
37 33 37 \3 3’3
5 1y (4.15)
F(Z,-,-:1— 1—)\)?
(3’3’3’ A))‘( A
2 84 2 (2 54
FlZ,—=, 1= AN = A+ —ZF (2, -, ;1= X) (A+1)(7A% — 10\
0468 (5.5 531 =3) 02 = a4 )= 3F (5551 A) (o (02 - oA+ D)4
2 24
2F ( = —1=A)A1=))2
(35 31-2) -2

but each hypergeometric function in the expressions above are not algebraic over Q(\).

Proof. Let X be a desingularization of the weighted hypersurface D given by the quasi-homogenization
F of f = g(x) + P(y), where g(x) = 2?2 + 2§ and P(y) = y(1 — y)(A — y). Consider the good form
L;—Q with 8 = (0,4,0). Observe that the form WTﬁ is not a good form. In this case A = Q?*®, so every
cycle in Hy(U, Q) induces an element in SHods (X, Q)p. Now consider the strong generic Hodge cycle
induced by §! = Z?:o n;01 * 5;1 with ng — n3 + ng # 0 or n; — ng + ng # 0. This guarantees that

4
§ : 5]
njCG 7é 07
J=0
since variety X is 2-dimensional, we have

! res (wﬁ> € Q).

27 Js1 12
Therefore by Proposition and Lemma [4.1] we conclude that
4 4 8 2 4 18 —
Floy—=, 2 1=A) (V= A+ —ZF (=, —, ;1 =X) (A +1)(5X% —8)X \).
07 (-3 351 -2) 02 = x40 = 2F (J -2 50 ) (62 -8+ 5)] €@
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It remains to prove that F( , %, %; 1-— /\), F (g, 3 3, 1-— ) ¢ Q(XN). For this, note that the

above hypergeometric functions are reducible, so use Theorem [A-4] To obtain the other expressions

the reasoning is the same but using the differential forms “;—g with 5 = (0,0, 83), and f3 =0,1,2.
|

Remark 4.6. Let X be a desingularization of the Weighted hypersurface D given by the quasi-
homogenization F of f = g(z) + P(y), where g(x) = 22 + x4, 6|d and P(y) = y(1 —y)(\ —y). If for
each s € {% -1,2 — 1} there is a strong generic Hodge cycle §' = Z;l;g n;01 * 6;1 on X such that

d—2

Z njCCJl'(ﬁerl) £0,

§=0
then we obtain exactly the same result of Proposition using the differential forms U;—g with 8 =
(0,3¢ —1,0) and 8= (0,4 —1,83), B3 =0,1,2.

Using the same idea with the same (3’s in the same variety of the proof of Proposition [4.8 and with
the cycle 0 = Z]:O n;dg * 5] such that ng — ng + ng # 0 or ny — ny + nyg # 0, we have

Proposition 4.9. The following expressions are in Q(\) :

3 7T 1111 2 4 181
byl 2 _ Ne —F|=. -2 2.2 1 2 _
0% ¢ <3, 3,3,A>(A A+ 1) <3, S,S,A)(AJF ) (5A% — 8\ +5),
5171 2 2141
0#F -~ —=Flz 25— ] (A+1

1 1 10 1 1 1 1
0%70}7(8 1 0-> ()\2—/\+1)—6F<5 L ;;Q (A1) (8X2 — 11 + 8)+

333"\ 3’3
2141

F(Z2,2,22 ) a1 =22

(3’3’3%)“ A

11113 1 10 /8 1 10 1
— — ——F —_— = 1) (7A2 -1
O;A <3 1303 A>(A A+1) <3 3,3,A>(/\+ ) (A 0N+ 7)+

517 1 )
F<3’3’3u> ML=)%

but each hypergeometric function in the expressions above is not algebraic over Q(\).

Remark 4.7. The algebraic functions of the expressions in Propositions [£.§ and [£.9] can be found
using Gauss’ relations. For example using the relation

(c— b)F(a, b—1,¢2)+ (2b—c—bz+az)F(a,b,c;z) +b(z —1)F(a,b+1,¢;2) =0, (4.16)
with a = £, b = 3 and c = § we obtain that equatlon is equal to 3)\% Using the latter
together Wlth equatlon where a = 2 b==2and c= 3 we ﬁnd that equation (4 is equal to

INF(A+1).
7



Chapter 4 Strong generic Hodge cycles and hypergeometric function

Remark 4.8. The differential forms used in Propositions and N are all forms such that ?—5 is a
good form, ng is not a good form, with Ag < 2 and Ag ¢ N. We would like to get more algebraic
expressions of hypergeometric functions such that the hypergeometric functions are not algebraic. One
possible path would be to explore the integrals of good forms =4 with WT’B is not good form, Ag > 2

f
and Ag ¢ N. The following proposition tells us that such a path is not possible.

Proposition 4 10 Consider f = g(x)+P(y), where g( ) ="+ 42" and P(y) = y(1—y)(A—y).
Suppose that = k is a good form with Ag > &, then L+ is a good form.

. w . .
Proof. Since f—‘,z is a good form, we can write

w

-3 a, 5” S (4.17)
with Ck; € C[A] and Agy (o x,) = Ap —|— < jsuch that j —1 < Ag + ’ orj—1<Ag+ J3 (see
Remark . Now let us apply the process of pole order increment to the differential form f,f . We

obtain

WE+(0,k;)
Z k; f] -1
where j — 1 < Ag +(0/ ) <J ThlS means that we need to increment the pole order again. Let us see
. We have

[%Ho’,k@-)} st [—WB+(0',kj+2) — 26w (0 +1)

FERE R T P fi

XVe must analyze each term of the previous expression. Let us see the most problematic term:
B+(0J:;_kj+1)

This implies that —f is not good form or the differential form

“B+(0 k;—1)

fi=t
of pole order increment again but by applying it we get that = fk is not a good form because appears

. Observe that j — % < A,B+(O’,kj+1) < j + % If Aﬁ+(0’,kj+1) = j, then ABJF(O/J%*Q) = j — 1.
“B+(0' k1)
fji
as Agy (o, k; ,1) = j — 5 we need to apply the process

appears one step before

obtaining equation (4.17)). If we have

the differential form % and Agy (o k; ;+1) = J. In conclusion Ag (o, k;+1) # 4. If necessary we
increment the pole order again. The other cases are similar, leading us to conclude that fk : is a good
form. |

Remark 4.9. Proposition tells us that in Proposition the condition that wTﬁ is a good form
is not necessary for k < 5 —

To obtain more algebraic expressions of hypergeometric functions such that the hypergeometric
functions are not algebraic we integrate a strong generic Hodge cycle in a good form L;—f such that WTﬂ is

not good form, Ag < k and Ag ¢ N, where f = g(x)+P(y), g(z) = 22 +24 and P(y) = y(1—y)(A—y).
Indeed in the proof of Proposition we saw that up to algebraic element over Q(\)
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211 §0

fk

B l,ﬁ2+1 B (A ’7A’
Lo <W5> (357 B (s B)ZCM)F <aj7bj7cj;i>’ (4.18)
J

2mi
with F (aj,bj,cj;ﬁ) contiguous to F(a, b, c; %), where a = Ag + B3, b = 1 — Ag, ¢ = 2Ag + B3.
Therefore if 6 = E?;g njdo * 6j_1 is a generic Hodge cycle we have that lb belongs to Q(\).
Furthermore, if

d—2
j(B2+1
angé(ﬁwr ) £ 0,
=0
using Lemma we conclude that >, Cj(A)F (aj,bj.cj;3) € Q(A). The fact that wTB is not a good

form implies that Ag = % for some N € N, and therefore F' (a, b, c; %) is reducible. Also note that

aj:a—{—k:j, bj:b+lj, Cj:C+dj

with kj;,l;,d; € Z. Consider \; = 1 —¢j, uj = ¢; —a; — b, v; = aj — bj. A straightforward
computation allows us to verify that A;, u;,7; do not satisfy the hypothesis of Theorem and
therefore F (aj, bj, ¢ %) ¢ Q(\). The same is valid for the cycle §'.

4.5 Computational verification

We can check the validity of Propositions [4.§ and using numerical computations by evaluating A
at algebraic numbers. Call G()\) the function defined by equation (4.13). We use the package
with(IntegerRelations) in Maple. The command

v := expand([seq(evalf [k] (G(lambda)~j), j =0 .. m)]);
computes powers of G(A) from 0 to m with k digits of precision. With the following command
u := LinearDependency(v, method = LLL);

we find a Z-linear relation between 1, G(\), G()\)?, ..., G(A\)™. The polynomial that satisfies G()\) can
be displayed with the command

P := add(uljl*z"(j-1), j =1 .. m+1);

This computation is heuristic, since we only have approximations of G(\). As an example of the above
take A =4 with 2 = —1, m = 400 and 400 digits of precision. We have the polynomial

8124 — 90022 + 10000.

These computations suggest that G(i) is an algebraic number. This is, of course, one consequence
of Proposition On the other hand, using the same ideas from Remark we can see that
G(X) = 223, Observe that G(i) is root of 812% — 900z% + 10000.
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With these same commands we can verify what was proven by Reiter and Movasati in [MRO6]
mentioned in the introduction of this thesis. Let us remember it: they proved that

5 1 27
Csm F (85116t
e T 1 T (4.19)
(85 11— 15t%)
belongs to Q((3) for some ¢ € Q if and only if
F(5,8,1; 3¢ F(5,3,1;1— 212
G(t) = n2 (661316 )’ F(t) = n2 (66 1316) Q
(3) I (3)
We have that ¢ satisfies
91125t* — 54000t + 256 = 0 or 81000t* — 48000t> — 1 = 0, (4.20)

then equation belongs to Q({3) (see [MRO6] and the references therein). Therefore the result of
Movasati and Reiter predicts that for ¢ satisfying (4.20)), G(¢) and F(t) are algebraic. We can check
the validity of the above by numerical calculation in the same way that we did at the beginning of this
section. Let us remember the commands: we use the package with(IntegerRelations) in Maple.
The command

alias(a=Root0f (91125*t~4-54000%t"2+256)) ;

take a root a of the polynomial 91125¢t* — 540002 + 256. The following command

v:=expand([seq(evalf[k](G(a)~j), j =0 .. m)1);

compute powers of G(a) from 0 to m with & digits of precision. Finally with the following command

u:=LinearDependency(v,method=LLL) ;

we find a Z-linear relation between 1,G(a), G(a)?,...,G(a)™. The polynomial that satisfies G(a) can
be displayed with the command

P:=add(ul[jl*z~(j-1), j =1 .. m+l);
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Therefore with m = 600 and 600 digits of precision we have the polynomial

— 242103 — 662102 — 4692101 + 45982190 — 2407627 + 308554278 + 257239277 + 8668327 + 94448229
— 16923482°* + 2393334273 + 215780622 — 8336412 — 24331032 — 253986325 4 9457654255+
5670219257 — 10724295250 + 1261161925 4 2009995923 + 3273606225% — 4201482252 — 1203205821
— 5889683250 + 631808227 — 494871028 4 10536701277 — 22909707276 + 1923240827

— 441617492™ + 435727127 + 1767060727 — 2403379527 + 1907044727 — 120301262%°

— 29262478258 + 58699595257 4 13483109296 — 27731582%° + 26752002254 — 419533253+
29904688252 + 10394590251 — 11699693250 — 414798482 + 15195839258 + 88516622°" — 3454531425°
— 4388379725 + 270262362°* 4 2690026023 — 6421512252 + 173918132°! — 67997412

— 54537002% — 2963696928 — 4265921247 — 181199772%0 4 697762382%° — 1700405724+
3741604121 — 3093834222 4 421909452 + 37539982210 — 7235067237 — 3719318238 — 12425103237
— 48524284235 — 650968223 — 26346217234 4 17800611233 — 66311884232 — 46619350231 +
213241862%° — 11608149422 — 39187149228 + 887461342%7 + 12865846225 + 86679407227+
220123189224 — 99134066223 — 101117505222 — 1952872522 — 6693800622 + 5615374027

— 139631321 + 69914142217 + 11864913126 — 387512062'° + 318857772 — 87759961213+
26172790212 — 123630132 — 2031414420 + 180620612 — 370168362° — 2018101527 4 155119962°
— 134852672° + 268179652* — 3023824123 — 8113806822 + 104585922 + 18848508.

These computations suggests that G(a) with a root of 91125t* — 54000¢2 + 256 is an algebraic number.
This is, of course, a consequence of the result of Movasati and Reiter stated above.
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APPENDIX A

Hypergeometric function

In our context, naturally the hypergeometric function appears when calculating periods (hence the
name of hypergeometric periods). That’s why this chapter contains a summary of the properties of
the hypergeometric function. For a more complete exposition see [Yos13,Beu07,|{AS48§].

A.1 Hypergeometric series

Let us define the hypergeometric series by the power series

o0

(a)n(
F(a,b,c;2) Z(cnn‘ ,

n=0
where (a)y, is the Pochhammer symbol defined by
(@ i=a(a+ 1) (a+n—1),

and ¢ is not 0,—1,—2,.... This function is symmetric in a and b, and the radius of convergence of
this series es 1, unless a or b is a nonpositive integer, in which case the function is a polynomial

Plem,beiz) = 3 (-1 <m> Bin > 0.

n=0 n (C)n

The holomorphic function defined by the hypergeometric series, as well as its analytic continuation,
is called the (Gauss) hypergeometric function. The hypergeometric function satisfies a linear
differential equation, namely

E(a,b,c) : (1—z)322+{c—(a+b+1)z}—abu-O (A.1)

This equation is called the hypergeometric (differential) equation.
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Chapter A Kummer’s 24 solutions

Proposition A.1. If Re(c) > Re(a) > 0 then we have

F(a,b,c;2) = ! ] /01 71— 1) (1 — 2t) 7 at, (A.2)

B(a,c—a
where B is the beta function. The integral represents a one valued analytic function in the z-plane
cut along the real axis from 1 to co. Therefore (A.2)) gives the analytic continuation of F(a,b,c;z).
Another integral representation is in the form of a Mellin-Barnes integral

I'(c) 0 (a+ s)T(b+ s)['(—s)
Flab,c;2) = — 2 ) ds: _ .
(a’ 70’ Z) 27TZF((I)F(b) /;zoo F(C“‘S) ( Z) S? ’aﬂ“g( Z)| < ™
The path of integration is curved, if necessary, to separate the poles s = —a —n and s = —b —n from

the poles s = n with n € N. The cases in which —a, —b or —c are non-negative integers or a — b equal
to an integer are excluded.

A.2 Kummer’s 24 solutions
From the last two equations a number of transformations for hypergeometric function can be derived

F(a,b,c;z) = (1—2) " F(¢c—a,c—b, ¢ 2) (A.3)

F(a,b,c;2) = (1—2)"°F <a, c—b,c zl) . (A4)
z —_—

If none of the numbers ¢, c—a—¥b, a—1b is equal to an integer, then two linearly independent solutions
of hypergeometric equation (A.1]) in the neighborhood of the singular points 0, 1, co are respectively

uy oy = F(a,b,c;2) = (1 - 2)7 P F(c —a,c — b, c; 2) (A.5)
Ug(0) = AF(a—c+1,b—c+1,2—¢2) =211 - 2) P F(1 —a,1 - b,2 — ¢; 2) (A.6)
uyy = Fla,b,a+b+1-¢1~—2) = FA4+b—cl+a—ca+b+1—cl—2) (A.7)

Ug(1) = (1—2) % F(c=b,c—a,c—a—b+1;1—2) = 217¢(1—2)* % F(1—a,1—b,c—a—b+1;1—2)
(A.8)

Ui(oo) = 2 “Fla,a—c+1,a —b+1; Y =2 1) P —be—ba—b+1;271)  (A9)
Un(o0) = 2 Fbb—c+1,b—a+1;27Y) =22 - 1) P F(1—a,c—a,b—a+1;271). (A.10)

Where the second set of equalities are obtained by applying the equation (A.3) to the first set of

expressions. Now applying equation (A.4) from equation (A.5)) to (A.10) we obtain another set of
representations for the previous solutions

- - @ — i = — —b — L
uyy = (1 —2) F(a,c b’c’z—l) (1—-2) F<b,c a,c,z_1> (A.11)
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l1—c c—a—1 z
Ug(0) = 2 (1-2) (a c+1, , c; p, 1)

(A.12)

=71 —z)c_b_lF (b—c—i— 1,1—a,2—c¢ : 1)
Z_

Uy (1) =2 %(a,a—c+la+b+1—cl—2zY) =2 Fbb+1—cat+b+l—cl—2""1) (A13)

us(1y = 27 (1=2) P F(c—a, 1=a, c—a—b+1;1-27") = 2"¢(1—2) """ F(c=b,1-b, c—a—b+1;1—z"")
(A.14)
Uioo) = (2 =) (a,c=ba—b+ L(1=2)7") = (= 1) "F(b,e—a,b—a+ 15 (1 —2)7!) (A.15)
u2(oo) = Zl_C(Z — l)C—a—lF <a —c+ 1, 1-— b,a — b+ 1, 1iz>
(A.16)

1
=17z — 1) 1R (b—c—l—l,l—a,b—a—i—l;l).
—z

The set of equations from (A.5)) to (A.16)) are called Kummer’s 24 solutions of the hypergeometric
equation.
Definition A.1. We call any function F(a + k,b + [,c¢ + m;2) with k,I,m € Z contiguous with
F(a,b,c;z).

Gauss found that among three contiguous hypergeometric functions Fi, F5 and Fj3 there exists a

relation of the form a1 Fy + asFs + agF3 = 0, where a1, as and ag are rational functions of z. These
relations are known as Gauss’ relations, for example:

clc=1)(z=1)F(a,b,c—1;2)+clc—1—(2c—a—b—1)z]F(a,b,c; z) + (c—a)(c—b)zF(a,b,c+1;z) =0

Other relations that the hypergeometric function satisfies are:

d" oy _ (@)n(b)n .
ﬁF(a,b,C,Z) = WF(a+n7b+n,C+n,Z) (A].?)
dn
T [z“+”_1F(a, b,c;z)] = (a)nz* YF(a+mn,b,c2) (A.18)
% {ZC_CH'”_I(I — 2)* ¢ (a,b, c; z)] = (c—a)pz" (1 = 2)¢T " F(a — n, b, ¢; 2) (A.19)
z
dm _ (c—a)p(c—Db)y e
- (1= a+b S . _ 1 — a+b—c np . A9
T[22 O -2 (abe+miz)  (A20)
;? [zc_lF(a, bc;2)] = (c— )z "L (a,b,c —n; 2). (A.21)

So, the above equations allow us to deduce the following:

Proposition A.2. Suppose a,b # 0, ¢ (mod Z) and ¢ ¢ Z. Then each function F(a+k,b+1,c+m;z2)
is equal a linear combination of F' and F’ with rational functions as coefficients, where k,l,m € Z. In
particular any three contiguous functions satisfy a C(z)-linear relation. In particular each F'(a,b,c; z)
contiguous to an algebraic Hypergeometric function is algebraic.
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Chapter A Monodromy

A.3 Monodromy

Figure A.1: A loop ~

The hypergeometric differential equation

d?u

E(a,b,c): z(1 — z)@ +{c—(a+b+ l)z};l—z —abu = 0.
is linear, of second order and has singularities at z = 0,1, 00. For any zy € C\{0,1} = P'\{0,1, 00}
there are two linearly independent analytic solutions f1, fo around zg. These solutions can be analyt-
ically continued along any path in C\{0, 1}. If v is a loop in C\{0, 1} starting and ending at zp, the
analytic continuation of fi, fo along v, v« f1, 7« f2, are again solutions of the equation E(a, b, c) around
9. Hence there exists M(y) € GL(2,C) such that

f 1> (f 1)
X =M .
() = mren (4
This induces the group homomorphism

m(C\{0,1},2) — GL(2,C)
¥ — M(v),

which is called the monodromy representation of the differential equation. The monodromy
group is the image of the monodromy representation. The above map depends on the choice of fi,
fa, z0. If we take another two linearly independent solutions, the new representation is conjugated to
the old one. This is also the case when we change 2y, the new monodromy group is conjugated to the
old one. So the differential equation determines the conjugacy class of a monodromy representation
and its monodromy group.

Definition A.2. The hypergeometric equation E(a, b, ) is called irreducible if neither of a, b, ¢ —a,
c — b is an integer.
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Now, we assume that a,b,c € R. Let zg be a point in the upper half plane H and let fi, fo be two
independent solutions of the hypergeometric equation E(a,b,c) around to zyp. The map

[ 12

H P!

z [fo(2) : f1(2)]

is called Schwarz map and satisfies:

Theorem A.1 (Schwarz). Let A = |1 —¢|, p = |[c—a —b|, v = |a — b] such that 0 < A\, u,v < 1. Then
D(z) maps ‘H UR one-to-one onto curvilinear triangle. The vertices correspond to the points D(0),
D(1), D(co) and the corresponding angles are A, um, vr.

D(1)

D(z)

D(e<)

0 1 o D(0)

Figure A.2: Schwarz map

The monodromy group of the hypergeometric equation F(a, b, ¢) can be described as follows: Let W
be the group generated by the reflections along the edges of the curvilinear triangle which is the image
of H by Schwarz map D(z). The monodromy group of the hypergeometric equation is isomorphic to
the subgroup of W consisting of all elements which are product of an even number of reflections. The
following well-known theorem indicates the importance of the monodromy group to determine when
the hypergeometric equation E(a,b,c) has algebraic solutions, see [Sch73], [vdW02, Theorems 1.7.1,
2.1.8].

Theorem A.2. The following statements are equivalent
i) The hypergeometric equation F(a,b,c) has a basis (y1,y2) of algebraic solutions.

ii) The monodromy group of the hypergeometric equation is finite.

iii) Z—; is algebraic and a, b, ¢ are rational.

Schwarz was the first to study and classify hypergeometric equations with finite monodromies
in [Sch73]. He showed that only the exponent differences A, u, v are of importance for a hypergeometric
equation to have an algebraic ratio of solutions % Moreover, Schwarz gave all triples (A, pu, v) in a list
of 15 types of these hypergeometric equations, divided by the isomorphism class of the monodromy

group, see table
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Chapter A Monodromy

Number | (A, u,v) | Monodromy group
1 (%, %, %) Dihedral
2 (% , %, %) Tetrahedral
3 (%, %, %) Tetrahedral
4 (% , %, %) Octahedral
5 (%, %, %) Octahedral
6 (% , %, %) Icosahedral
7 (% , %, %) Icosahedral
8 (% , % , %) Icosahedral
9 (% , %, %) Icosahedral
10 (% , %, %) Icosahedral
11 (% , % , %) Icosahedral
12 (% , % , %) Icosahedral
13 (% , % , %) Icosahedral
14 (% , %, %) Icosahedral
15 (% , % , %) Icosahedral

Table A.1: Schwarz’s list

Theorem A.3 (Schwarz [Sch73]). Let F'(a,b, c; z) be a solution of a irreducible hypergeometric equa-
tion E(a,b,c) such that 0 < A\ p,v <1, 0< A+ pu, A+v, p+v<1withA=|1—c¢|, p=|c—a—b|,
v =|a — b|. Then F(a,b,c;z) is algebraic over C(z) if only if (A, u,v) is in the table

For this version see [Bat53, §2.7.2]. For other versions see [Zo06, §12.17] and [Kim69, §5]. By the
previous theorem and by Proposition we have

Corollary A.1. Suppose a,b #Z 0,c¢ (mod Z) and ¢ ¢ Z. If F(a,b,c;z) is contiguous to a hyperge-
ometric function with angular parameters (A, u, v) belonging to the Schwarz’s list (table |A.1]), then
F(a,b,c; z) is algebraic.

There is a not well-known result that characterizes when a reducible hypergeometric equation has
a basis of algebraic solutions, see [Zo106, §12.17] and [Kim69, §5].

Theorem A.4 (Schwarz [Sch73|). Consider A =1 —¢, p = c—a—0b, v = a —b. The reducible
hypergeometric equation E(a,b, c) has a basis of algebraic solutions if and only if none of the singular
points z = 0, 1, 0o is logarithmic and exactly two of the numbers A+u+v, —A+pu+v, A—pu+v, A+pu—v
are odd integers.
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