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Abstract

We compute periods of perturbations of a Fermat variety. This allows us to consider a
subspace of the Hodge cycles defined by “simple” arithmetic conditions. We explore some
examples and give an upper bound for the dimension of this subspace. As an application, we
find explicit expressions involving some Gauss’ hypergeometric functions which are algebraic
over the field of rational functions in one variable.

1 Introduction

The present work is devoted to the study of hypersurfaces with hypergeometric periods. We focus
on a particular class, Fermat varieties perturbed by P (y) = y(1 − y)(λ − y). Periods (roughly
speaking multiple integrals) are an essential part of Hodge theory that have their deepest origins
in elliptic and abelian integrals. We do not aim to verify the Hodge conjecture in our examples,
rather we would like to analyze transcendental properties of integration over Hodge cycles.

Deligne in 1982 explored periods of algebraic cycles. He proved that up to some constant
power of 2π

√
−1, the periods of algebraic cycles are algebraic with respect to the field of definition

of the variety (see [Del82]). This would be also true for Hodge cycles if the Hodge conjecture
holds true. In fact, Deligne proved that this property is satisfied by periods of Hodge cycles in
classic Fermat varieties even though Hodge conjecture is unknown in this case. With this, he
obtained algebraic relations between the values of the Γ-function on rational points. This same
idea was elaborated in 2006 by Reiter and Movasati with the family

Mt : f(x) := x3
1 + x3

2 + · · ·+ x3
5 − x1 − x2 = t,

to obtain algebraic relations of values of the hypergeometric functions (see [MR06]). For example,
they proved that

e−
5
6
πi F

(
5
6 ,

1
6 , 1; 27

16 t
2
)

F
(

5
6 ,

1
6 , 1; 1− 27

16 t
2
)

belongs to Q(ζ3) for some t ∈ Q if and only if

π2F
(

5
6 ,

1
6 , 1; 27

16 t
2
)

Γ
(

1
3

)3 , π2F
(

5
6 ,

1
6 , 1; 1− 27

16 t
2
)

Γ
(

1
3

)3 ∈ Q.

The above is satisfied if t is any root of the following equations

91125t4 − 54000t2 + 256, 81000t4 − 48000t2 − 1,

see [MR06] and the references therein.
In this paper, we elaborate these same ideas with the family

Mλ : f(x) := xm1
1 + · · ·+ xmnn + y(y − 1)(y − λ) = 0.
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We compute its periods and use them to give some algebraic hypergeometric functions (see
equation (1)). This result is framed in Schwarz’ work. Schwarz in [Sch73] was the first to
classify hypergeometric functions which are algebraic over C(z). A crucial idea was to relate the
hypergeometric equation with the monodromy group. In the famous Schwarz’ list, Schwarz
determines explicit criteria for the parameters of the irreducible hypergeometric equations such
that the solutions are algebraic. In the same work, Schwarz also obtained a similar but not so
famous criterion in the case of reducible hypergeometric equations (see also [Kim69, §5]).

A more general question raised by Wolfart in [Sar07, Problem 6] is to determine the transcen-
dence degree of the field extension of C(z) generated by the hypergeometric functions F (a, b, c; z)
where a, b, c ∈ Q with some fixed denominator. Or even better to determine a complete list of
algebraic dependence equations among these F (a, b, c; z) over the field C(z). Examples of such
relations are Propositions 1 and 14, Schwarz’ list and Gauss’ relations between contiguous hy-
pergeometric functions (see [Vid03] and the references therein). Up to the author’s knowledge,
Wolfart’s problem remains open and without significant progress.

Throughout the paper, n will be an even number. Let g(x) := xm1
1 + · · ·+ xmnn , mi ≥ 2, and

let P be a degree m = mn+1 polynomial with m ≥ 2. Consider

f = g(x) + P (y),

and let F be its quasi-homogenization inside the weighted projective space P(1,v) where vj =
lcm(m1,...,mn+1)

mj
for j = 1, . . . , n + 1. Let X be a desingularization of the weighted hypersurface

D := {F = 0} ⊂ P(1,v). We are interested in Hodge cycles of X supported in the affine part
U := {f = 0}. For this, we consider a parametric family. Let

T :=

{
t = (t0, . . . , tm) ∈ Cm+1

∣∣∣∣tm = 1, ∆(Pt) 6= 0 where Pt :=
m∑
i=0

tiy
i

}
be the space of polynomials of degree m with nonzero discriminant, and let

U := {(x, y, t) ∈ Cn × C× T | ft(x, y) := g(x) + Pt(y) = 0}
be the family of affine varieties parameterized by T . Thus, the projection π : U −→ T is
a locally trivial C∞ fibration (see [Mov20, §7.4] and the references therein). We denote by
Ut := π−1(t) = {ft = 0} ⊂ Cn+1 and Xt be a desingularization of Dt := {Ft = 0} ⊂ P(1,v) where
Ft is the quasi-homogenization of ft.

We say that a cycle δt0 ∈ Hn(Ut0 ,Q) is a generic Hodge cycle if all perturbations δt of it
in the family T are Hodge cycles (see Definition 3). This space is denoted by GHodn(Xt0 ,Q)0.
We consider a subspace of the generic Hodge cycles space by imposing certain conditions, which
we call the space of strong generic Hodge cycles and we denote it by SHodn(Xt0 ,Q)0 (see
Definition 4). These cycles are supported in U and they do not depend on the desingularization,
because desingularization is done outside of U . Essentially U is unaffected by the blow-up
process.

Our main result is an upper bound for the dimension of the space of strong generic Hodge
cycles in certain cases.

Theorem 1. Let X be a desingularization of the weighted hypersurface D given by the quasi-
homogenization F of f = g(x) + P (y), where g(x) = xm1

1 + · · · + xmnn , mi ≥ 2 and P is a
polynomial of degree m ≥ 2.

i. For m1 = · · · = mn−1 = 2 and m ≥ 7

dim SHodn(X,Q)0 ≤
{
m− 1 mn even,
0 mn odd.
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ii. For m1 = · · · = mn−2 = 2, mn−1 prime, gcd(mn−1,mn) = 1 and 1
mn−1

+ 1
m < 1

2 , we have

SHodn(X,Q)0 = 0.

iii. For mj , j = 1, . . . , n, different prime numbers, we have SHodn(X,Q)0 = 0.

In fact, the proof of the previous theorem provides a method to calculate a set of generators
of SHodn(X,Q)0 even if m < 7 in the first case and if 1

mn−1
+ 1

m ≥
1
2 for the second case. Using

this, we get:

Corollary 1. Let X be a desingularization of the weighted hypersurface D given by the quasi-
homogenization F of f = g(x) + P (y), where g(x) = xm1

1 + · · · + xmnn , mi ≥ 2 and P is a
polynomial of degree m.

i. For m1 = · · · = mn−1 = 2 and m = 2, . . . , 6

dim SHodn(X,Q)0 ≤ (m− 1)

 ∑
2≤d≤b 2m

m−2
c

d|mn

ϕ (d)

 ,

where ϕ is the Euler’s totient function. When m = 2 means that 2 ≤ d ≤ mn and d|mn.
Therefore for m = 2, dim SHodn(X,Q)0 ≤ (mn − 1).

ii. For m1 = · · · = mn−2 = 2, mn−1 prime, gcd(mn−1,mn) = 1 and 1
mn−1

+ 1
m ≥

1
2 , we have

dim SHodn(X,Q)0 ≤ (m− 1)(mn−1 − 1)


∑

2≤d≤b mmn−1
mmn−1−m−mn−1

c
d|mn

ϕ (d)

 ,

where ϕ is the Euler’s totient function.

We obtain algebraic hypergeometric functions by a different method than that used by
Schwarz. For this, we restrict ourselves to the case Pλ(y) = y(1 − y)(λ − y), and we compute
the periods on explicit strong generic Hodge cycles. For example, we get

(1) F

(
5

6
,
1

6
,
5

3
; 1− λ

)
, F

(
7

6
,
−1

6
,
7

3
; 1− λ

)
∈ Q(λ).

The above is somewhat exceptional given that periods are usually transcendental. Other by-
products of this work are examples of non-algebraic hypergeometric functions that satisfy alge-
braic relations between them.

Proposition 1. The following expressions are in Q(λ) :

(2) 0 6= 6F

(
4

3
,−4

3
,
8

3
; 1− λ

)
(λ2 − λ+ 1)− 2

3
F

(
4

3
,−1

3
,
8

3
; 1− λ

)
(λ+ 1) (5λ2 − 8λ+ 5),

(3) 0 6= 2F

(
2

3
,−2

3
,
4

3
; 1− λ

)
− 2

3
F

(
2

3
,
1

3
,
4

3
; 1− λ

)
(λ+ 1) ,
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0 6=4F

(
2

3
,−5

3
,
4

3
; 1− λ

)
(λ2 − λ+ 1)− 1

3
F

(
2

3
,−2

3
,
4

3
; 1− λ

)
(λ+ 1) (8λ2 − 11λ+ 8)+

F

(
2

3
,
1

3
,
4

3
; 1− λ

)
λ(1− λ)2,

(4)

0 6=6F

(
2

3
,−8

3
,
4

3
; 1− λ

)
(λ2 − λ+ 1)− 2

3
F

(
2

3
,−5

3
,
4

3
; 1− λ

)
(λ+ 1) (7λ2 − 10λ+ 7)+

2F

(
2

3
,−2

3
,
4

3
; 1− λ

)
λ(1− λ)2,

(5)

but each hypergeometric function in the expressions above is not algebraic over Q(λ). For a
numerical verification of this proposition see §4.4.

We can find the algebraic functions of the expressions in Proposition 1 using hypergeometric
theory via Gauss’ relations, see Remark 6. Proposition 1 suggests that the Hodge cycles in
Theorem 1 and Corollary 1 should be absolute in the sense of Deligne, see [Del82, §2]. Moreover,
the algebraic functions in Proposition 1 might be used in order to construct the underlying
algebraic cycles explicitly, see [MS20].

Similarly to Schwarz’ work, Beukers and Heckman classified the generalised hypergeometric
functions which are algebraic over C(z) in [BH89]. On the other hand, meantime this article
was being written, Movasati was able to obtain similar algebraicity properties of periods which
are gathered in [Mov20, §16.9]. Apparently these periods must be related in some way to the
generalised hypergeometric functions described in [BH89], for instance via a pull-back. For the
classification scheme of pull-back transformations between Gauss hypergeometric differential
equations see [Vid09].

Acknowledgements. I am deeply grateful to my advisor Hossein Movasati for his reading,
suggestions and several useful conversations. I thank Stefan Reiter and Michael Dettweiler for
hosting me at the University of Bayreuth and for providing such a stimulating environment
to work. Furthermore, I would like to thank Roberto Villaflor for his helpful discussions, his
comments and suggestions on the first version of this article. Funding was provided by CNPq
(Grant No. 140607/2017-0).

2 Hodge cycles

Throughout the text we will use xn+1 and y interchangeably. Let f(x, y) = g(x) + P (y) be the
polynomial given by g(x) = xm1

1 + · · ·+ xmnn and a polynomial P (y) of degree m = mn+1 with
non-zero discriminant. When we look at the usual compactification in the projective space of
U = {f = 0} is usually not smooth. Thus, we will consider the compactification in the weighted

projective space P(1,v) with vj = lcm(m1,...,mn+1)
mj

. In this case Steenbrink [Ste77, §4] describes

how to construct an explicit basis for the cohomology of a given weighted hypersurface. This
is just the generalization of the homogeneous smooth case given by Griffiths in [Gri69] We use
this explicit basis to state our definition of Hodge cycles.

Let M be a smooth projective variety and Y be a smooth hyperplane section of M . Writing
the long exact sequence of the pair (M,V ), where V = M\Y , and using the Thom-Leray
isomorphism we have

· · · → Hn−1(Y,Z)
σ→ Hn(V,Z)

i→ Hn(M,Z)
τ→ Hn−2(Y,Z)→ · · · ,
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where the map τ is the intersection with Y . An element δ ∈ Hn(V,Q) is called a cycle at

infinity if δ ∈ Ker(Hn(V,Q)
i→ Hn(M,Q)). We denote

Hn(V,Q)∞ := Ker(Hn(V,Q)
i→ Hn(M,Q))

∼= Im(Hn−1(Y,Z)
σ→ Hn(V,Q)).

We denote the primitive homology (dual to the primitive cohomology, see [Mov20, §5.7]) by

Hn(M,Q)0 := Ker(Hn(M,Q)
τ→ Hn−2(Y,Q)).

Thus, we have

Hn(M,Q)0
∼=

Hn(V,Q)

Ker(Hn(V,Q)
i→ Hn(M,Q))

=
Hn(V,Q)

Hn(V,Q)∞
.

(6)

On the other hand, the Hodge decomposition determines the Hodge filtration: 0 = Fn+1 ⊂
Fn ⊂ · · · ⊂ F 1 ⊂ F 0 = Hn

dR(M) with F k = F kHn
dR(M) := Hn,0 +Hn−1,1 + · · ·+Hk,n−k where

Hk,n−k := Hk,n−k(M), which allows us to define Hodge cycles. A cycle δ ∈ Hn(M,Q) is called
a Hodge cycle if ∫

δ
F
n
2

+1 = 0.

We denote by Hodn(M,Q) the space of Hodge cycles in Hn(M,Q). Now, by [Mov20, Proposition
5.10] and equation (6) we have

(7) Hodn(M,Q)0 := Hodn(M,Q) ∩Hn(M,Q)0
∼=

{
δ ∈ Hn(V,Q)|

∫
δ F

n
2

+1

0 = 0
}

{
δ ∈ Hn(V,Q)|

∫
δ F

0
0 = 0

} ,

where F k0 = F k ∩Hn
dR(M)0 is the corresponding Hodge filtration of the primitive cohomology.

With this in mind, let us return to our case of interest. Let F be the quasi-homogenization of
f given by

F (x0, . . . , xn+1) = xd0f

(
x1

xv10

, . . . ,
xn+1

x
vn+1

0

)
,

where d := lcm(m1, . . . ,mn+1), vj = d
mj

, f(x, y) = g(x) + P (y) is the polynomial given by

g(x) = xm1
1 +· · ·+xmnn and P (y) is a polynomial of degree m = mn+1 with non-zero discriminant.

Thus F is quasi-homogeneous in P(1,v) with v = (v1, . . . , vn+1), and so it defines a weighted
hypersurface D. We have

U := {f = 0} ⊂ D := {F = 0} ⊂ P(1,v).

Definition 1. Let X be a desingularization of the weighted hypersurface D given by the quasi-
homogenization F of f = g(x) + P (y). We define the space of primitive Hodge cycles as
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Hodn(X,Q)0 :=

{
δ ∈ Hn(U,Q)|

∫
δ res

(
ωβ
fj

)
= 0, Aβ < j, 1 ≤ j ≤ n

2

}
{
δ ∈ Hn(U,Q)|

∫
δ res

(
ωβ
fj

)
= 0, Aβ < j, 1 ≤ j ≤ n+ 1

} ,
with Aβ =

∑n+1
j=1 (βj + 1)

vj
d and

ωβ = xβdx := xβ11 · · ·x
βn+1

n+1 dx1 ∧ · · · ∧ dxn+1.

If P(1,v) = Pn+1, it follows by [Ste77] that this definition coincides with the classical definition
of Hodge cycles (see equation (7)). For instance, if X is defined by f = xd1 + · · ·+xdn +xdn+1 + 1.

3 Integration over joint cycles

In this section we explain how to calculate periods on cycles in affine varieties. For a more
detailed description, the reader is referred to [Mov20,AVGZ88].

3.1 Multiple Integrals for Fermat varieties

Let m1,m2, . . . ,mn be integers bigger than one and consider the (n−1)-th affine Fermat variety

Lb :=
{
x ∈ Cn

∣∣∣g(x) = b
}
⊂ Cn,

where g = xm1
1 + · · ·+ xmnn , and b 6= 0. We denote L := L1. Let

∆n−1 :=

(t1, · · · , tn) ∈ Rn
∣∣∣ tj ≥ 0,

n∑
j=1

tj = 1

 ,

be the standard (n− 1)-simplex and let ζmj = e
2π
√
−1

mj be an mj-th primitive root of unity. For
α ∈ J = Im1 × Im2 × · · · × Imn with Im = {0, . . . ,m− 2} and a ∈ {0, 1}n, consider

∆α+a : ∆n−1 7−→ L

(t1, . . . , tn) 7−→
(
t

1
m1
1 ζα1+a1

m1
, . . . , t

1
mn
n ζαn+an

mn

)
.

The formal sum

δα :=
∑
a

(−1)
∑

n
i=1(1−ai)∆α+a

induces a non-zero element in Hn−1(L,Z). In fact

Proposition 2. The cycles {δbα}α∈J are a basis for the Z-module Hn−1(Lb,Z), with δbα =
(φb)∗(δα) and φb : L→ Lb is the biholomorphism given by

φ(x1, · · · , xn) = (b1/m1x1, · · · , b1/mnxn),

where b1/mj is a fixed mj-th root of b.

Proof. See [Mov20, §7.9, Remark 7.1] or [AVGZ88, §2.9]

The following proposition was first done by Deligne in [Del82, Proposition 7.13 ] for the
classical Fermat variety with m1 = · · · = mn. The general case is due to Movasati [Mov20,
Proposition 15.1].
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Proposition 3. Let g = xm1
1 + · · ·+ xmnn , then∫

∆α+a

res

(
xβ
′
dx′

g

)
= ΛB

(
β1 + 1

m1
, . . . ,

βn + 1

mn

)
,

where x = (x′, y), dx = dx′ ∧ dy = dx1 ∧ · · · ∧ dxn ∧ dy, β = (β′, βn+1) = (β1, . . . , βn, βn+1),

xβ
′

= xβ11 x
β2
2 . . . xβnn = x′β

′
, Λ is given by

Λ = (−1)n−1

 n∏
j=1

1

mj

 n∏
j=1

ζ
(βj+1)(αj+aj)
mj

 ,

and B(b1, . . . , bn) is the multi parameter version of the beta function given by

B(b1, b2, · · · , bn) :=
Γ(b1) · · ·Γ(bn)

Γ(b1 + · · ·+ bn)
,

with Γ is the Gamma function. Therefore, for δα ∈ Hn−1(L,Z) we have

∫
δα

res

(
xβ
′
dx′

g

)
=

(−1)n−1∏n
j=1mj

n∏
j=1

(
ζ

(αj+1)(βj+1)
mj − ζαj(βj+1)

mj

)
B

(
β1 + 1

m1
, . . . ,

βn + 1

mn

)
.

Remark 1. Via the biholomorphic map φb the periods of Lb are given by

(8)

∫
δbα

res

(
xβ
′
dx′

g

)
= b

∑n
j=1

βj+1

mj
−1
∫
δα

res

(
xβ
′
dx′

g

)
.

3.2 Joint cycles

Let P (y) be a polynomial and let C be the set of its critical values with 0, 1 /∈ C. This implies
that the variety

U := {(x, y) ∈ Cn × C|P (y) = −g(x)}

is smooth. Fix a regular value b ∈ C \ (C ∪ 0) of P . Let δ1b ∈ H0(P−1(b),Z) and δ2b ∈
Hn−1(−g−1(b),Z) be two vanishing cycles and ts, s ∈ [0, 1] be a path in C such that it starts
from a point in C, crosses b and ends in 0 (the only critical value of g), and never crosses C ∪ 0
except by the mentioned cases. We assume that δ1b vanishes along t−1 when s tends to 0 and
δ2b vanishes along t when s tend to 1. The following object

δ1 ∗ δ2 = δ1 ∗t δ2 :=
⋃

s∈[0,1]

δ1ts × δ2ts

induces a cycle in Hn(U,Z) and it is called the joint cycle of δ1b and δ2b along t.
The set {δ−1

α }α∈J described in Proposition 2 is a basis of vanishing cycles for Hn−1({g =
−1},Z). Take a basis {δk}m−2

k=0 of vanishing cycles for H0({P = 1},Z). The joint cycles of these
two basis satisfy

Theorem 2. The Z-module Hn(U,Z) is freely generated by

δk ∗ δ−1
α , k = 0, · · · ,m− 2, α ∈ J.
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Proof. See [Mov20, Theorem 7.4] or [AVGZ88, Theorem 2.9] for a proof in more general context.

For t0 ∈ T and t ∈ T in a neighborhood of t0, the monodromy of δt0k ∗ δ
−1
α ∈ Hn(Ut0 ,Z) is

given by δtk ∗ δ−1
α ∈ Hn(Ut,Z) where δtk is the monodromy of δt0k in the family

V := {(y, t) ∈ C× T | Pt(y) = 1}.

Now, we describe how to reduce a higher dimensional integral to a lower-dimensional one.

Proposition 4. The integral over cycle δk ∗ δ−1
α is given by

∫
δk∗δ−1

α

res

(
ωβ

P (y) + g(x)

)
=


p({−g=1},β′,δ−1

α )
p({zq=1},γ,δ)

∫
δk∗δ res

(
yβn+1zγdy∧dz

P−zq
)

Aβ′ /∈ N

p({−g=1},β′,δ−1
α )

b
Aβ−1

∫
δ̃k
ω̃ Aβ′ ∈ N

,

where β = (β′, βn+1), δ = [ζq] − [1] ∈ H0({zq = 1},Z), q and γ are given by the equality

Aβ′ :=
∑n

i=1
βi+1
mi

= γ+1
q , and p({zq = 1}, γ, δ) =

ζγ+1
q −1
q , in the first case. In the second case,

δ̃k ∈ H0({P = 0},Z) is the monodromy of δk along the path ts and ω̃ is the function such that
dω̃ = P (y)Aβ′−1yβn+1dy. In both cases

p({−g = 1}, β′, δ−1
α ) :=

∫
δ−1
α

res

(
xβ
′
dx′

g

)
,

where xβ
′

= xβ11 x
β2
2 . . . xβnn and dx′ = dx1 ∧ · · · ∧ dxn.

Proof. This is just a particular case of [Mov20, Proposition 13.9].

As an illustration of the previous proposition we have

Proposition 5. Let f = g(x) + P (y) be a polynomial with g(x) = xm1
1 + xm2

2 + · · · + xmnn ,
mj ≥ 2 and P (y) = y(1− y)(λ− y), λ > 1. Consider the cycles δ0 := [1]− [0], δ1 := [λ]− [1] ∈
H0({P (y) = 0},Z) and ts the straight line connecting one of the critical values of P (y) with 0.
If Aβ′ /∈ N, we have

∫
δ0∗tδ−1

α

res

(
ωβ
f

)
=
λAβ′−1p({g = −1}, β′, δ−1

α )

ζγ+1
q − 1

B
(
Aβ′ + βn+1, Aβ′

)
·

F

(
Aβ′ + βn+1, 1−Aβ′ , 2Aβ′ + βn+1;

1

λ

)
,

(9)

∫
δ1∗tδ−1

α

res

(
ωβ
f

)
=

(−1)Aβ′−1(λ− 1)2Aβ′−1p({g = −1}, β′, δ−1
α )

ζγ+1
q − 1

B
(
Aβ′ , Aβ′

)
·

F
(
Aβ′ , 1−Aβ′ − βn+1, 2Aβ′ ; 1− λ

)
,

(10)

where F (a, b, c; z) is the hypergeometric function and

p({g = −1}, β′, δ−1
α ) =

(−1)n+Aβ′∏n
j=1mj

n∏
j=1

(
ζ

(αj+1)(βj+1)
mj − ζαj(βj+1)

mj

)
B

(
β1 + 1

m1
, . . . ,

βn + 1

mn

)
.
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Proof. It is just an application of Propositions 3 and 4. Note that the integral∫
δk∗δ

res

(
yβn+1zγdy ∧ dz

P − zq

)
is over a one-dimensional cycle in {P (y) = zq} and can be computed as a line integral by
projecting δk ∗ δ onto the y-coordinate. For example if k = 0, we have

∫
δ0∗δ

res

(
yβn+1zγdy ∧ dz

P − zq

)
=

1

q

∫
δ0∗δ

yβn+1zγ−q+1dy

=
1

q

∫
C
yβn+1P (y)

γ−q+1
q dy

=
λ
γ−q+1
q

q

∫ 1

0
sβn+1 [s(1− s)(1− s

λ
)]
γ−q+1
q ds,

where C is the path induced by the projection of δ0 ∗ δ that connects the roots 0 and 1 of the
polynomial P (y). A straightforward computation allows us to conclude the proof, taking into
account that

F (a, b, c; z) =
1

B(a, c− a)

∫ 1

0
ta−1(1− t)c−a−1(1− zt)−bdt,

for Re(c) > Re(a) > 0.

3.3 Pole reduction

We have seen how to calculate integrals of the residue of differential forms with pole of order
one over joint cycles. Now we explain how to calculate the integrals of the residue of differential
forms with arbitrary pole order. For this, we reduce the pole order of the differential form to
order one and then we apply Proposition 4. This is also known as Griffiths-Dwork method. We
use an affine version of this method taken from [Mov20, §10.11].

Let ∆ be the discriminant of the polynomial P (y). We know there are polynomials Q1(y),
Q2(y) such that

(11) ∆ = Q1
∂P

∂y
+ PQ2.

Example 1. Our main case of interest is when P = y(1 − y)(λ − y). In this case we have
∆ = λ2(1− λ)2. The polynomials Q1, Q2 satisfying equation (11) are given by

Q1(y) = aλy
2 + bλy + cλ, Q2(y) = −3aλy + eλ,

with

aλ = 2(λ2 − λ+ 1), bλ = −(2λ3 − λ2 − λ+ 2),

cλ = λ(1− λ)2, eλ = 4λ3 − 3λ2 − 3λ+ 4.

The following description of the differential form ∆dx will help us to reduce the pole order
of a differential form with a pole along {f = 0}.

9



Proposition 6. There is an n-differential form ξ such that

(12) ∆dx = df ∧ ξ + fQ2dx,

with Q2(y) as above.

Proof. First remember that x = (x′, y) and dx = dx′ ∧ dy = dx1 ∧ · · · ∧ dxn ∧ dy. Consider

ξ = Q1(y)dx′ −Q2(y)η′ ∧ dy,

where η′ :=
∑n

i=1(−1)i−1 xi
mi
d̂x′i, with d̂x′i := dx1 ∧ dx2 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxn and Q1

Q2 satisfy (11).

From equality (12), it follows that there are n-differential forms ξβ such that

∆ωβ = df ∧ ξβ + fQ2ωβ,

namely ξβ = xβξ. Thus

∆
ωβ
f j

=
df ∧ ξβ + fQ2ωβ

f j
=

1

j − 1

(
dξβ
f j−1

− d
(

ξβ
f j−1

))
+
Q2ωβ
f j−1

.

Using that d(x′β
′
η′) = Aβ′x

′β′dx′, we have

dξβ = x′β
′
(
βn+1y

βn+1−1Q1(y) + yβn+1
∂Q1(y)

∂y

)
dx′ ∧ dy −Aβ′Q2(y)ωβ

= βn+1Q1ωβ−(0′,1) + (Q′1 −Aβ′Q2)ωβ,

where β = (β′, βn+1), (0′, 1) ∈ I and Aβ′ :=
∑n

i=1
βi+1
mi

. Therefore, in Hn+1
dR (Cn+1\U) we obtain

the following formula that allows us to reduce the pole order:

[
ωβ
f j

]
=

1

∆

[
1

j − 1

(
dξβ
f j−1

)
+
Q2ωβ
f j−1

]
=

1

∆

[
βn+1Q1ωβ−(0′,1) + (Q′1 −Aβ′Q2)ωβ

(j − 1)f j−1
+
Q2ωβ
f j−1

]
=

1

∆

[
βn+1Q1

j − 1

ωβ−(0′,1)

f j−1
+

((
1−

Aβ′

j − 1

)
Q2 +

Q′1
j − 1

)
ωβ
f j−1

]
.

(13)

With this, we can compute integrals of differential forms with pole of a higher order. For
example:

Proposition 7. In the same context of Proposition 5, we have

10



∫
δ0∗tδ−1

α

res

(
ωβ
f2

)
=
λAβ′−3p({g = −1}, β′, δ−1

α )

(1− λ)2(ζγ+1
q − 1)

B
(
Aβ′ + βn+1 − 1, Aβ′

)
×[

(Aβ′ + βn+1 − 1)2

(2Aβ′ + βn+1 − 1)2
F

(
Aβ′ + βn+1 + 1, 1−Aβ′ , 2Aβ′ + βn+1 + 1;

1

λ

)
×(

3Aβ′ + βn+1 − 1
)
aλ+

Aβ′ + βn+1 − 1

2Aβ′ + βn+1 − 1
F

(
Aβ′ + βn+1, 1−Aβ′ , 2Aβ′ + βn+1;

1

λ

)
×(

(1−Aβ′)eλ + (1 + βn+1)bλ

)
+F

(
Aβ′ + βn+1 − 1, 1−Aβ′ , 2Aβ′ + βn+1 − 1;

1

λ

)
βn+1cλ

]
.

∫
δ1∗tδ−1

α

res

(
ωβ
f2

)
=

(−1)Aβ′−1(λ− 1)2Aβ′−3p({g = −1}, β′, δ−1
α )

λ2(ζγ+1
q − 1)

B(Aβ′ , Aβ′)×[
F
(
Aβ′ ,−(Aβ′ + βn+1), 2Aβ′ ; 1− λ

) (
3Aβ′ + βn+1 − 1

)
aλ +

F
(
Aβ′ ,−(Aβ′ + βn+1 − 1), 2Aβ′ ; 1− λ

) (
(1−Aβ′)eλ + (1 + βn+1)bλ

)
+ F

(
Aβ′ ,−(Aβ′ + βn+1 − 2), 2Aβ′ ; 1− λ

)
βn+1cλ

]
,

with aλ, bλ, cλ, eλ as in Example 1, (a)n is the Pochhammer symbol defined by

(a)n := a(a+ 1) · · · (a+ n− 1),

and

p({g = −1}, β′, δ−1
α ) =

(−1)n+Aβ′∏n
j=1mj

n∏
j=1

(
ζ

(αj+1)(βj+1)
mj − ζαj(βj+1)

mj

)
B

(
β1 + 1

m1
, . . . ,

βn + 1

mn

)
.

3.4 Pole increment

We start this section by giving a criterion for when a differential form in the affine part actually
comes from a differential form in the compactification.

Proposition 8. If Aβ = k ∈ N, the meromorphic form
ωβ
fk

has pole of order one at infinity. If

Aβ < k ∈ N, the meromorphic form
ωβ
fk

has no pole at infinity.

Proof. See [Ste77, Lemma 2] or [Mov20, Proposition 11.4].

How to know if the meromorphic form
ωβ
fk

, Aβ > k comes from a form in the compactification?
For this, we increment the pole order and apply the previous proposition. To increment the pole
order we reproduce [Mov20, Proposition 11.3]. Consider η :=

∑n+1
i=1 (−1)i−1 xi

mi
d̂xi and ηβ = xβη.

Observe that dηβ = Aβωβ, thus

ωβ
fk

=
dηβ
Aβfk

=
1

Aβ

(
kdf ∧ ηβ
fk+1

+ d

(
ηβ
fk

))
.

11



Therefore in Hn+1
dR (Cn+1\U) we have

[
ωβ
fk

]
=

k

Aβ

[
df ∧ ηβ
fk+1

]
=

k

Aβ

[
fωβ + (h− f)ωβ + d(f − h) ∧ ηβ

fk+1

]
and thus

(14)

[
ωβ
fk

]
=

Aβ
Aβ − k

[
(h− f)ωβ + d(f − h) ∧ ηβ

fk+1

]
,

where h is the last weighted homogeneous piece of f and satisfies dh ∧ ηβ = hωβ. In our case
h = g(x) + ydeg(P (y)) = xm1

1 + · · · + xmnn + ydeg(P (y)). If P (y) =
∑mn+1

j=0 cjy
j with cmn+1 6= 0 we

have [
ωβ
fk

]
=

Aβ
mn+1(Aβ − k)

[∑mn+1−1
j=0 (j −mn+1)cjωβ+(0′,j)

fk+1

]
.

Therefore, using the process of pole order increment, the meromorphic form
ωβ
fk

with Aβ > k
can be written as a finite sum

(15)

[
ωβ
fk

]
=
∑

Cj

[ω
βlj

f j

]
,

with A
βlj
≤ j, k < j, βlj = (β

lj
1 , . . . , β

lj
n+1) and Cj ∈ C. Note that even when A

βlj
< j we

can increment the pole order. We will stop the process of pole order increment the first time
A
βlj
≤ j is satisfied.

Remark 2. For the polynomial P (y) = y(y − 1)(y − λ) the pole order increment looks like[
ωβ
fk

]
=

Aβ
3(Aβ − k)

[
(1 + λ)ωβ+(0′,2) − 2λωβ+(0′,1)

fk+1

]
.

Therefore, we can write the meromorphic form
ωβ
fk

with Aβ > k as a finite sum

(16)

[
ωβ
fk

]
=
∑

Cj

[
ωβ+(0′,kj)

f j

]
,

with k < j and it is the first time that Aβ+(0′,kj) ≤ j. This means that Aβ+(0′,kj) ≤ j and one

step before reaching (16), the differential form
ωβ+(0′,kj−1)

fj−1 appears with j − 1 < Aβ+(0′,kj−1) or

the differential form
ωβ+(0′,kj−2)

fj−1 appears with j − 1 < Aβ+(0′,kj−2).

Definition 2. A meromorphic form
ωβ
fk

is called good form if Aβ < k or if k < Aβ /∈ N and

the differential form written as in equation (15), satisfies A
βlj

< j.

Observe that a good form has no residue at infinity and hence it comes from an element in
Hn
dR(X).
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Example 2. Consider f = g + P with g(x) = x2
1 + x9

2 and P (y) = y3 + ay2 + by + c. The
differential forms

ωβ
f with β = (0, β2, β3), β2 = 2, 5 and β3 = 0, 1 are good forms. Let us see it

for β2 = 2, we can write[
ωβ
f

]
=

Aβ
3(Aβ − 1)

[−aωβ+(0′,2) − 2bωβ+(0′,1) − 3cωβ

f2

]
,

where 0′ = (0, 0). If β3 = 0 then 1 < Aβ, Aβ+(0′,1), Aβ+(0′,2) < 2 and the above equation
corresponds to equation (15). If β3 = 1, then 1 < Aβ, Aβ+(0′,1) < 2 and Aβ+(0′,2) > 2. Therefore

we apply again the pole order increment to the differential form
ωβ+(0′,2)

f2
and we obtain

[
ωβ
f

]
=
−aAβ(Aβ + 2/3)

9(Aβ − 1)(Aβ − 4/3))

[−aωβ+(0′,4) − 2bωβ+(0′,3) − 3cωβ+(0′,2)

f3

]
+

Aβ
3(Aβ − 1)

[−2ωβ+(0′,1) − 3cωβ

f2

]
.

with 2 < Aβ+(0′,j) < 3, j = 2, 3, 4.

4 Families of varieties and Hodge cycles

In this section, we introduce the notion of generic Hodge cycles which describe those Hodge
cycles that remain Hodge when doing monodromy along any path in a family of varieties. We
find generic Hodge cycles that are “elementally” defined. As an application, we find algebraic
expressions involving hypergeometric functions.

4.1 Generic and strong generic Hodge cycles

Let X be a desingularization of the weighted hypersurface D given by the quasi-homogenization
F of f = g(x) + P (y), where g(x) = xm1

1 + · · ·+ xmnn , mi ≥ 2, P (y) : C→ C is a polynomial of
degree m = mn+1 ≥ 2. Let

T :=

{
t = (t0, . . . , tm) ∈ Cm+1

∣∣∣∣tm = 1, ∆(Pt) 6= 0 where Pt :=

m∑
i=0

tiy
i

}
be the space of polynomials of degree m with nonzero discriminant, and let

U := {(x, y, t) ∈ Cn × C× T | ft(x, y) := g(x) + Pt(y) = 0}

be the family of affine varieties parameterized by T . Thus the projection π : U −→ T is
a locally trivial C∞ fibration (see [Mov20, §7.4] and the references therein). We denote by
Ut := π−1(t) = {ft = 0} ⊂ Cn+1 and Xt be a desingularization of Dt := {Ft = 0} ⊂ P(1,v) where
Ft is the quasi-homogenization of ft.

Definition 3. Fix t0 ∈ T , we say that δt0 ∈ Hn(Ut0 ,Q) is a generic Hodge cycle if δt is a
Hodge cycle of Xt, this means, δt ∈ Hodn(Xt,Q)0 for all t ∈ T and δt is the monodromy of δt0
along a path on T that connects t0 to t. We will denote this space by GHodn(Xt0 ,Q)0.

On the other hand, by Definition 1, equation (13) and Proposition 4, we have the following
subspace of GHodn(Xt0 ,Q)0.
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Definition 4. Consider the Q-vector space

A : =

{
(nα,k) ∈ Q|I|

∣∣∣∣∣∑
α∈J

nα,k

∫
δ−1
α

res

(
xβ
′
dx′

g

)
= 0, ∀β s.t. Aβ <

n

2

}

=

(nα,k) ∈ Q|I|
∣∣∣∣∣∣
∑
α∈J

nα,k

n∏
j=1

ζ
αj(βj+1)
mj = 0, ∀β′ s.t. Aβ′ <

n

2
− 1

m

 ,

(17)

where I = J × Im = Im1 × · · · × Imn × Im, β = (β′, βn+1), and Aβ =
∑n+1

j=1
βj+1
mj

. To obtain the

equality in (17) we use Proposition 3 and that{
β′
∣∣∣Aβ′ < n

2
− 1

m

}
=
{
β′
∣∣∣Aβ < n

2
, β = (β′, βn+1)

}
.

The space of strong generic Hodge cycles is the image of A under the natural map

(18)
A −→ Hodn(Xt0 ,Q)0

(nα,k) 7−→
[∑m−2

k=0

∑
α∈J nα,kδk ∗ δ−1

α

]
.

We denote this space by SHodn(Xt0 ,Q)0 ⊂ GHodn(Xt0 ,Q)0.

Remark 3. It is easy to see that

A ∼=

{
(nα) ∈ Q|J |

∣∣∣∣∣∑
α∈J

nα

n∏
j=1

ζ
αj(βj+1)
mj = 0, ∀β′ s.t. Aβ′ <

n

2
− 1

m

}m−1

,

and therefore δ =
∑m−2

k=0 δ
k is a strong generic Hodge cycle if and only if {δk}k=0,...,m−2 are

strong generic Hodge cycles, with δk =
∑

α∈J nα,kδk ∗ δ−1
α .

We already have the necessary ingredients to prove Theorem 1.

Proof of Theorem 1. For the first part consider

Amn,m :=

{
(nj) ∈ Qmn−1

∣∣∣∣∣
mn−2∑
j=0

njζ
j(βn+1)
mn = 0, ∀βn s.t.

βn + 1

mn
<

1

2
− 1

m

}
.

Note that in this case, with g = x2
1 + · · ·+ x2

n−1 + xmnn , we have A = Am−1
mn,m. Thus, it is enough

to prove that

Amn,m ∼=
{

Q mn even,
0 mn odd.

For this, consider

(19) Smn,m :=

{
1 ≤ e < mn

(
1

2
− 1

m

)
: e|mn

}
and Q(nj)(x) =

∑mn−2
j=0 njx

j . For each (nj) ∈ Amn,m and e ∈ Smn,m it is satisfied that

Q(nj)(ζ
e) = 0 because e

mn
< 1

2 −
1
m . This means for each (nj) ∈ Amn,m we have

14



∏
e∈Smn,m

Φmn/e(x)

∣∣∣∣Q(nj)(x),

where Φk is kth cyclotomic polynomial. The above implies that Amn,m ∼= Qmn−1−Nmn,m with
Nmn,m :=

∑
e∈Smn,m ϕ

(
mn
e

)
and ϕ is the Euler’s totient function, via the isomorphism

Amn,m
∼=−→ Q[x]mn−2−Nmn,m

(nj) 7−→
Q(nj)

(x)∏
e∈Smn,m

Φmn
e

(x) .

On the other hand, note that for m ≥ 7, we have that Smn,m =
{

1 ≤ e < mn
2 : e|mn

}
, and using

that
∑

e|mn ϕ(mn/e) = mn we get

Nmn,m =

{
mn − 2 mn even,
mn − 1 mn odd.

This allows us to conclude the proof in the first case.
The idea of the proof of the second case is similar in spirit to the first case. Consider

Bmn−1,mn,m :=

{
(nj) ∈ Qmn−1

∣∣∣∣∣
mn−2∑
j=0

njζ
j(βn+1)
mn = 0, ∀βn s.t.

βn + 1

mn
< 1− 1

m
− 1

mn−1

}
,

Amn−1,mn,m :=

(nij) ∈ Q(mn−1−1)(mn−1)

∣∣∣∣∣∣∣∣∣∣

mn−1−2∑
i=0

mn−2∑
j=0

nijζ
i(βn−1+1)
mn−1

ζj(βn+1)
mn = 0,

∀(βn−1, βn) s.t.
βn−1 + 1

mn−1
+
βn + 1

mn
< 1− 1

m

 .

Note that in this case, with g = x2
1 + · · ·+ x2

n−2 + x
mn−1

n−1 + xmnn , we have A = Am−1
mn−1,mn,m. As

gcd(mn−1,mn) = 1 and mn−1 is a prime number, we have [Q(ζmn−1 , ζmn) : Q(ζmn)] = mn−1− 1

and therefore the Q(ζmn)-vector space Q(ζmn−1 , ζmn) has basis {1, ζmn−1 , . . . , ζ
mn−1−2
mn−1 }. This

implies that

mn−1−2∑
i=0

mn−2∑
j=0

nijζ
i(βn−1+1)
mn−1

ζj(βn+1)
mn = 0⇐⇒

mn−2∑
j=0

nijζ
j(βn+1)
mn = 0 for each 0 ≤ i ≤ mn−1 − 2.

Therefore

Amn−1,mn,m
∼=

{
(nij) ∈ Q(mn−1−1)(mn−1)

∣∣∣∣∣(nij)
mn−2
j=0 ∈ Bmn−1,mn,m,

for every 0 ≤ i ≤ mn−1 − 2

}
∼= (Bmn−1,mn,m)mn−1−1.

From the above, it is enough to prove that Bmn−1,mn,m = 0, when 1
mn−1

+ 1
m < 1

2 . For this, we
proceed exactly the same as in the first case.

It remains for us to prove the third case. For this consider

A(mj)
∼=

{
(nα) ∈ Q|J |

∣∣∣∣∣∑
α∈J

nα

n∏
j=1

ζ
αj(βj+1)
mj = 0, ∀β′ s.t. Aβ′ <

n

2
− 1

m

}
,
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where J =
∏n
j=1 Imj , Imj = {0, 1, . . . ,mj − 2} and Aβ′ =

∑n
j=1

βj+1
mj

. Observe that A = Am−1
(mj)

.

It is sufficient to show that A(mj) = 0. As m1, . . . ,mn are different prime numbers, we have

Q(ζm1 , . . . , ζmn) ∼= Q(ζ∏mj ) and [Q(ζ∏mj ) : Q] =

n∏
j=1

(mj − 1).

Moreover note that if α 6= α̂, then
∏n
j=1 ζ

αj
mj 6=

∏n
j=1 ζ

α̂j
mj . Therefore the Q-vector space

Q(ζm1 , . . . , ζmn) has basis
{∏n

j=1 ζ
αj
mj

}
α∈J

. This implies that

∑
α∈J

nα

n∏
j=1

ζ
αj
mj = 0⇐⇒ nα = 0 for every α ∈ J,

but the above is one of the conditions that satisfy the elements of A(mj), with β′ = (0, . . . , 0).

The proof of the third part of Theorem 1 allows us to deduce

Corollary 2. Let X be a desingularization of the weighted hypersurface D given by the quasi-
homogenization F of f = g(x) + P (y), where g(x) = xm1

1 + · · ·+ xmnn and P (y) = ymn+1 + 1. If
mj , j = 1, . . . , n+ 1, are different prime numbers, then Hodn(X,Q)0 = 0.

Proof. Let us consider t0 = (1, 0, . . . , 0, 1) ∈ T . In this case ft0 = xm1
1 + · · ·+ xmnn + ymn+1 + 1.

In this particular case, we can rewrite equation (13) as[
ωβ
f j

]
= Cj

[
ωβ
f

]
,

with Cj ∈ Q. If Aβ ∈ N and Aβ < j, then Cj = 0. The last equation up to a nonzero constant
is equal to [Mov20, equation (11.13)]. With this and using Proposition 2 and 3, we have in the
definition of Hodge cycles (see Definition 1){

δ ∈ Hn(Ut0 ,Q)
∣∣∣ ∫

δ
res

(
ωβ

f jt0

)
= 0, Aβ < j, 1 ≤ j ≤ n

2

}
∼= A(mj),

where

A(mj)
∼=

{
(nα) ∈ Q|I|

∣∣∣∣∣∑
α∈I

nα

n+1∏
j=1

ζ
αj(βj+1)
mj = 0, ∀β s.t. Aβ <

n

2
, Aβ /∈ N

}
,

with I =
∏n+1
j=1 Imj , Imj = {0, 1, . . . ,mj − 2} and Aβ =

∑n+1
j=1

βj+1
mj

. Similarly, as in the third

part of the proof above, we have A(mj) = 0, when m1, . . . ,mn+1 are different prime numbers.
In conclusion Hodn(Xt0 ,Q)0 = 0, where Xt0 is a desingularization of the weighted hypersurface
Dt0 given by the quasi-homogenization Ft0 of ft0 and mj , j = 1, . . . , n + 1 are different prime
numbers.

The proof of Theorem 1 provides a method to calculate the rank of Amn,m and its generators
when m < 7 as well as provides a method to calculate the rank of Bmn−1,mn,m and its generators
when 1

mn−1
+ 1

m ≥
1
2 . With this, we obtain Corollary 1.
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Proof of Corollary 1. With the notations of the previous proof, we know that A = Am−1
mn,m and

Amn,m ∼= Qmn−1−Nmn,m with Nmn,m :=
∑

e∈Smn,m ϕ
(
mn
e

)
, where Smn,n is defined in (19).

Observe that

Nmn,m = mn −
∑

e/∈Smn,m
e|mn

ϕ
(mn

e

)
.

Therefore

dim(A) = (m− 1)

 ∑
e/∈Smn,m
e|mn

ϕ
(mn

e

)
− 1

 = (m− 1)

 ∑
mn( 1

2
− 1
m

)≤e<mn
e|mn

ϕ
(mn

e

)

= (m− 1)

 ∑
2≤d≤ 2m

m−2

d|mn

ϕ (d)

 ,

where d = mn
e . This proves the first part. For the second part, we know from the proof of

Theorem 1 that A ∼= B(m−1)(mn−1−1)
mn−1,mn,m and Bmn−1,mn,m

∼= Qmn−1−Nmn−1,mn,m with Nmn−1,mn,m :=∑
e∈Smn−1,mn,m

ϕ
(
mn
e

)
, where

Smn−1,mn,m :=

{
1 ≤ e < mn

(
1− 1

mn−1
− 1

m

)
; e|mn

}
.

With this, we proceed as in the first part. The second part is similar to the first part.

4.2 Hodge numbers

With the notations from the previous sections, let us consider t0 = (1, 0, . . . , 0, 1) ∈ T . In this
case ft0 = xm1

1 + · · ·+ xmnn + ymn+1 + 1. The affine Fermat variety {ft0 = 0} has a sequence of
numbers related to the Hodge numbers of the compact smooth underlying variety Xt0 . Namely

hk−1,n−k+1
0 := #{β ∈ I| k − 1 < Aβ < k}.

These number are symmetric, hk−1,n−k+1
0 = hn−k+1,k−1

0 , since the set I is invariant under the
transformation

β −→ m− β − 2 := (m1 − β1 − 2, . . . ,mn+1 − βn+1 − 2),

and therefore Am−β−2 = n + 1 − Aβ. These numbers satisfy hp,q = hp,q0 , for p 6= q, where

hp,q = dimHp,q(Xt0). In the remaining case h
n
2
,n
2 − h

n
2
,n
2

0 depends on the desingularization of
Dt0 . For more details see [Mov20, §15.4] and the references therein. The Hodge numbers do not
change when the complex structure varies continuously. More precisely

Theorem 3. Let π : X −→ B be a family of complex manifolds (i.e. π is proper and submersive)
and assume that X0 is Kähler for some 0 ∈ B. Then for b in a neighborhood of 0 in B, the
Hodge numbers of Xb are the same as the Hodge numbers of X0.

Proof. See [Voi02, Proposition 9.20].
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The above theorem implies that the numbers hk−1,n−k+1
0 are the same for every t ∈ T in the

fibration π : U −→ T, see also [Mov07, §7] and the references therein.
Let X be a desingularization of the weighted hypersurface D given by the quasi homoge-

nization F of f = g(x) + P (y), where g(x) = xm1
1 + · · · + x

mn1
n1 + x2

n1+1 + x2
n1+2 + · · · + x2

n1+k1

and P (y) is a fixed polynomial of degree m. Here n = n1 + k1. Observe that k1
2 < Aβ and this

implies that hk−1,n−k+1
0 = 0 = hn−k+1,k−1

0 for k ≤ bk12 c. For example if g = x2
1 + · · ·+x2

n−1 +xmnn
or g = x2

1 + · · ·+ x2
n−2 + x

mn−1

n−1 + xmnn , the sequence of numbers are surface-like:

0, . . . , 0, h
n
2

+1,n
2
−1

0 , h
n
2
,n
2

0 , h
n
2
−1,n

2
+1

0 , 0, . . . , 0.

In other words, the Hodge structure of Hn(X,Z) has level 2. Further, if h2,0
0 ,h1,1

0 are the
corresponding Hodge numbers for g2 = x2

1 + xmn2 or g2 = x
mn−1

1 + xmn2 respectively, we have

h2,0
0 = h

n
2

+1,n
2
−1

0 and h1,1
0 = h

n
2
,n
2

0 .
The variety induced by f = g(x) + P (y), where g = x2

1 + · · · + x2
n−1 + xmnn and P (y) =

y(1 − y)(λ − y), will be used constantly in the next section. In the following corollary, we

calculate their Hodge numbers: h
n
2

+1,n
2
−1

0 , h
n
2
−1,n

2
+1

0 and h
n
2
,n
2

0 .

Corollary 3. Let X be a desingularization of the weighted hypersurface D given by the quasi-
homogenization F of f = g(x)+P (y), where g = x2

1 + · · ·+x2
n−1 +xmnn and P (y) is a polynomial

of degree 3. We have

h
n
2

+1,n
2
−1

0 = h
n
2
−1,n

2
+1

0 =

⌊
mn − 1

6

⌋
,

h
n
2
,n
2

0 = mn − 2 +

⌈
5mn

6

⌉
−
⌊mn

6

⌋
.

Proof. First, note that it is enough to prove it for the case n = 2. Let us see one case, the other
is analogous.

h1,1
0 :=#{β ∈ I| 1 < Aβ < 2}

=#

{
β ∈ I

∣∣∣ 1

2
<
β2 + 1

mn
+
β3 + 1

3
<

3

2

}
=#

{
β2 ∈ Imn

∣∣∣ mn

2
< 3(β2 + 1) < 3mn

}
+ #

{
β2 ∈ Imn

∣∣∣ 0 < 3(β2 + 1) <
5mn

2

}
=mn − 1−

⌊mn

6

⌋
+

⌈
5mn

6

⌉
− 1.

4.3 Strong generic Hodge cycles and hypergeometric function

In the rest of the document we will use d instead of mn. The proof of Theorem 1 provides
us with a method to find strong generic Hodge cycles explicitly in the cases described. In the
2-dimensional case, by Lefschetz (1, 1) theorem each Hodge cycle is algebraic. But the algebraic
cycles satisfies

Proposition 9 (Deligne). Let X be a smooth projective variety. If δ ∈ Hm(X,Q) is algebraic,
then for every ω ∈ Hm

dR(X/k):

1

(2πi)m/2

∫
δ
ω ∈ k,

where X/k denotes the variety over a field k ⊂ C.
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Proof. See [Del82, Proposition 1.5].

We can find algebraic expressions involving hypergeometric functions using Proposition 9
and the following fact

(20)
B
(

1
2 , . . . ,

1
2 ,

βn+1
d

)
B
(
Aβ′ + k,Aβ′

)
π
n
2

∈ Q,

where Aβ′ = n−1
2 + βn+1

d and k, βn ∈ N. Which is obtained using the properties of the beta B
and gamma Γ functions.

In most of the following results, we will have the hypothesis that Aβ′ /∈ N. This assures that
hypergeometric functions appear within the computations of the periods (see Propositions 4, 5,
7). The following proposition allows us to partially re-obtain Schwarz’ list in [Sch73].

Proposition 10. Let X be a desingularization of the weighted hypersurface D given by the
quasi-homogenization F of f = g(x) + P (y), where g(x) = x2

1 + xd2 and P (y) = y(1− y)(λ− y).
Consider

ωβ
f a good form with Aβ′ = 1

2 + β2+1
d /∈ N and β = (β′, β3) = (β1, β2, β3). Let

δ0 =
d−2∑
j=0

nj,0δ0 ∗ δ−1
j , δ1 =

d−2∑
j=0

nj,1δ1 ∗ δ−1
j .

If δ0 and δ1 are generic Hodge cycles then either

(21)

d−2∑
j=0

nj,kζ
j(β2+1)
d , k = 0, 1

is zero or

F

(
Aβ′ + β3, 1−Aβ′ , 2Aβ′ + β3;

1

λ

)
and F

(
Aβ′ , 1−Aβ′ − β3, 2Aβ′ ; 1− λ

)
are in Q(λ).

Proof. The fact that
ωβ
f is a good form means that res

(
ωβ
f

)
∈ H2

dR(X/Q) (see Proposition 8).

Therefore by Lefschetz (1.1) theorem and Proposition 9 we have

1

2πi

∫
δ
res

(
ωβ
f

)
∈ Q(λ),

if δ is a generic Hodge cycle. The above integral is computed in Proposition 5 and using equation
(20) one gets the result.

In the context of Example 2, using Theorem 1 we can describe the strong generic Hodge
cycles. With this description, we observe that

δ1 = n0(δ1 ∗ δ−1
0 + δ1 ∗ δ−1

3 + δ1 ∗ δ−1
6 ) + n1(δ1 ∗ δ−1

1 + δ1 ∗ δ−1
4 + δ1 ∗ δ−1

7 )

is a strong generic Hodge cycle such that equation (21) is nonzero. Therefore applying the pre-
vious corollary to δ1 and the differential forms in Example 2, we obtain that the hypergeometric
functions in equation (1) are algebraic over Q(λ).

The property in Proposition 9 would be also true for Hodge cycles if the Hodge conjecture
is true. Deligne has proved this property for Hodge cycles in the usual Fermat variety, even
though the Hodge conjecture is unknown. More explicitly
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Proposition 11 (Deligne). Let X be a smooth projective variety defined by xd1 + · · · + xdn+1.
If δ ∈ Hm(X,Q) is a Hodge cycle, then for every ω ∈ Hm

dR(X/k):

1

(2πi)m/2

∫
δ
ω ∈ k,

where X/k denotes the variety over a field k ⊂ C.

Proof. See [Del82, Theorem 7.15] or [Mov20, Theorem 16.1].

In the same direction of the previous proposition, we have the following result

Proposition 12. Let Xn be a desingularization of the weighted hypersurface Dn given by
the quasi-homogenization Fn of fn = gn(x) + P (y), where gn(x) = x2

1 + · · · + x2
n−1 + xdn and

P (y) = y(1 − y)(λ − y). Consider
ωβ
fn

a good form with Aβ′ /∈ N. If δ ∈ Hn(Xn,Q) is a strong
generic Hodge cycle, we have

1

(2πi)n/2

∫
δ
res

(
ωβ
fn

)
∈ Q(λ).

Proof. The main idea of the proof is to use Lefschetz (1, 1) theorem in the 2-dimensional case and
to construct the n-dimensional integral from the 2-dimensional integral. Consider (nkj) ∈ A,
where A is defined in (17). This element induces the cycle

δn = δn0 + δn1 =
d−2∑
j=0

nj,0δ0 ∗ δ−1
n,j +

d−2∑
j=0

nj,1δ1 ∗ δ−1
n,j ,

with δ−1
n,j ∈ Hn−1({gn = −1}), which in turn induces a strong generic Hodge cycle. We know

that δn is a strong generic Hodge cycle if and only if δn0, δn1 are strong generic Hodge cycles
(see Remark 3). Now consider the differential form

ωβ̂
f2

with β̂ = (0, βn, βn+1). Observe that
ωβ̂
f2

=
ωβ
fn

for n = 2 and that n
2 − 1 < Aβ = Aβ̂ + n

2 − 1 for each β. An analysis similar to the

proof of Proposition 15 allows us to deduce that if
ωβ
fn

is a good form then
ωβ̂
f2

is a good form.

Now, by Proposition 5, up to multiplication by a nonzero element of Q(λ) we have

1

(2πi)
n
2

∫
δn0

res

(
ωβ
fn

)
=

1

(2πi)
n
2

d−2∑
j=0

nj,0ζ
j(βn+1)
d

B

(
1

2
, . . . ,

1

2
,
βn + 1

d

)
×

B
(
Aβ′ , Aβ′

)
F

(
Aβ′ + βn+1, 1−Aβ′ , 2Aβ′ + βn+1;

1

λ

)
.

(22)

On the other hand, up to multiplication by a nonzero element of Q(λ)

1

2πi

∫
δ20
res

(
ωβ̂
f2

)
=

1

2πi

d−2∑
j=0

nj,0ζ
j(βn+1)
d

B

(
1

2
,
βn + 1

d

)
×

B
(
Aβ̂′ , Aβ̂′

)
F

(
Aβ̂′ + βn+1, 1−Aβ̂′ , 2Aβ̂′ + βn+1;

1

λ

)
.

(23)

Since δ20 induces a strong generic Hodge cycle of X2, by Lefschetz (1, 1) theorem, δ20 is algebraic.

By Proposition 9 we have that 1
2πi

∫
δ20 res

(
ωβ̂
f2

)
∈ Q(λ). If the integral in (23) is zero, then

equation (22) is zero. If it is not zero, then equation (20) allows us to conclude that the
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hypergeometric function of equation (23) is algebraic over Q(λ). As Aβ′ = Aβ̂′ + n
2 − 1 and

ωβ̂
f2

is a good form we have that the functions

F

(
Aβ′ + βn+1, 1−Aβ′ , 2Aβ′ + βn+1;

1

λ

)
, F

(
Aβ̂′ + βn+1, 1−Aβ̂′ , 2Aβ̂′ + βn+1;

1

λ

)
are contiguous and irreducible. The hypergeometric function F (a, b, c) is called irreducible
if neither of a, b, c − a, c − b is an integer. Two hypergeometric functions F (a1, b1, c1; z) and
F (a2, b2, c2; z) are contiguous if the difference of their parameters

a1 − a2, b1 − b2, c1 − c2

are integer numbers. Now by classical theory of the hypergeometric function, the hypergeometric
function in (22) is equal to a Q(λ)-linear combination of the hypergeometric functions in (23)
and their derivatives (see [Beu07, Theorem 1.1]). In conclusion, the hypergeometric function in
(22) is also algebraic over Q(λ). Now using equation (20) we conclude that (22) is algebraic

over Q(λ). The same reasoning is valid for the integral 1

(2πi)
n
2

∫
δn1 res

(
ωβ
fn

)
, which allows us to

conclude the result.

The above argument does not work for a differential form with pole of order greater than
one. However, we can still get a similar result using the same ideas with an extra hypothesis.

Proposition 13. Let X be a desingularization of the weighted hypersurface D given by the
quasi-homogenization F of f = g(x) + P (y), where g(x) = x2

1 + · · · + x2
n−1 + xdn and P (y) =

y(1 − y)(λ − y). Consider
ωβ
fk

a good form such that
ωβ
f is also a good form, and Aβ′ /∈ N. If

δ ∈ Hn(X,Q) is a strong generic Hodge cycle, we have

1

(2πi)n/2

∫
δ
res

(
ωβ
fk

)
∈ Q(λ).

Proof. Consider (nkj) ∈ A, this element induces the cycle

δ = δ0 + δ1 =

d−2∑
j=0

nj,0δ0 ∗ δ−1
j +

d−2∑
j=0

nj,1δ1 ∗ δ−1
j ,

with δ−1
j ∈ Hn−1({g = −1}), which in turn induces a strong generic Hodge cycle. We know

that δ is a strong generic Hodge cycle if and only if δ0, δ1 are strong generic Hodge cycles (see
Remark 3). By Proposition 5, up to multiplication by a nonzero element of Q(λ) we have

1

(2πi)
n
2

∫
δ0
res

(
ωβ
f

)
=

d−2∑
j=0

nj,0ζ
j(βn+1)
d

 B
(

1
2 , . . . ,

1
2 ,

βn+1
d

)
B
(
Aβ′ , Aβ′

)
(2πi)

n
2

F

(
a, b, c;

1

λ

)
,

(24)

where a = Aβ′ + βn+1, b = 1 − Aβ′ , c = 2Aβ′ + βn+1. The fact that
ωβ
f is a good form implies

that F
(
a, b, c; 1

λ

)
is irreducible. An inductive argument allows us to prove, up to multiplication

by a nonzero element of Q(λ) that
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1

(2πi)
n
2

∫
δ0
res

(
ωβ
fk

)
=

d−2∑
j=0

nj,0ζ
j(βn+1)
d

 B
(

1
2 , . . . ,

1
2 ,

βn+1
d

)
B
(
Aβ′ , Aβ′

)
(2πi)n/2

×

∑
j

Cj(λ)F

(
aj , bj , cj ;

1

λ

)
,

(25)

with F
(
aj , bj , cj ;

1
λ

)
contiguous to F

(
a, b, c; 1

λ

)
and Cj(λ) ∈ Q(λ). The first inductive step is for

k = 2. In this case we use Proposition 7. For the general case we apply pole order reduction (see
(13)) and then the inductive hypothesis. Note that if the integral in (24) is zero, then integral
in (25) is zero. Now, suppose that δ0 is a strong generic Hodge cycle and that the integral
in (24) is nonzero. By Proposition 12 and equation (20) we have that F

(
a, b, c; 1

λ

)
∈ Q(λ).

Therefore F
(
aj , bj , cj ;

1
λ

)
are algebraic over Q(λ) (see [Beu07, Theorem 1.1]). With this and

using equation (20) we conclude that (25) is algebraic over Q(λ). The same is valid for the cycle
δ1.

Remark 4. Under the hypotheses of the previous proposition, the proof tells us that the hy-

pergeometric functions that appear in the integral 1
(2πi)n/2

∫
δ res

(
ωβ
fk

)
are algebraic.

In the 2-dimensional case, the previous result is independent of the hypothesis that
ωβ
f is a

good form. What will be the nature of the hypergeometric functions that appear in the integral
1

2πi

∫
δj res

(
ωβ
fk

)
, j = 0, 1, when

ωβ
fk

is a good form and
ωβ
f is not a good form? Exploring these

integrals with k = 2 we obtain Proposition 1.

Proof of Proposition 1. Let X be a desingularization of the weighted hypersurface D given by
the quasi-homogenization F of f = g(x)+P (y), where g(x) = x2

1+x6
2 and P (y) = y(1−y)(λ−y).

Consider the good form
ωβ
f2

with β = (0, 4, 0). Observe that
ωβ
f is not a good form. In this case

A = Q2×5, so every cycle in H2(U,Q) induces an element in SHod2(X,Q)0. Now consider
the strong generic Hodge cycle induced by δ1 =

∑4
j=0 njδ1 ∗ δ−1

j with n0 − n3 + n2 6= 0 or
n1 − n2 + n4 6= 0. This guarantees that

4∑
j=0

njζ
5j
6 6= 0,

since variety X is 2-dimensional, we have

1

2πi

∫
δ1
res

(
ωβ
f2

)
∈ Q(λ).

Therefore by Proposition 7 and equation (20) we conclude that

[
6F

(
4

3
,−4

3
,
8

3
; 1− λ

)
(λ2 − λ+ 1)− 2

3
F

(
4

3
,−1

3
,
8

3
; 1− λ

)
(λ+ 1) (5λ2 − 8λ+ 5)

]
∈ Q(λ).

It remains to prove that F
(

4
3 ,−

4
3 ,

8
3 ; 1− λ

)
, F
(

4
3 ,−

1
3 ,

8
3 ; 1− λ

)
/∈ Q(λ). For this, note that the

above hypergeometric functions are reducible and their angular parameters λ = 1−c, µ = c−a−b,
ν = a−b don’t satisfy that exactly two of the numbers λ+µ+ν, −λ+µ+ν, λ−µ+ν, λ+µ−ν
are odd integers. This implies that F

(
4
3 ,−

4
3 ,

8
3 ; 1− λ

)
, F

(
4
3 ,−

1
3 ,

8
3 ; 1− λ

)
/∈ Q(λ), see [Żo l06,

Theorem 12.17, item (c)]. To obtain the other expressions the reasoning is the same but using
the differential forms

ωβ
f2

with β = (0, 0, β3), and β3 = 0, 1, 2.
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Remark 5. Let X be a desingularization of the weighted hypersurface D given by the quasi-
homogenization F of f = g(x) + P (y), where g(x) = x2

1 + xd2, 6|d and P (y) = y(1 − y)(λ − y).
If for each β2 ∈

{
5d
6 − 1, d6 − 1

}
, there is a strong generic Hodge cycle δ1 =

∑d−2
j=0 njδ1 ∗ δ−1

j on
X such that

d−2∑
j=0

njζ
j(β2+1)
d 6= 0,

then we obtain exactly the same result of Proposition 1 using the differential forms
ωβ
f2

with

β =
(
0, 5d

6 − 1, 0
)

and β =
(
0, d6 − 1, β3

)
, β3 = 0, 1, 2.

Using the same idea with the same β’s in the same variety of the proof of Proposition 1 and
with the cycle δ0 =

∑4
j=0 njδ0 ∗ δ−1

j such that n0 − n3 + n2 6= 0 or n1 − n2 + n4 6= 0, we have

Proposition 14. The following expressions are in Q(λ) :

(26) 0 6= 3

5
F

(
7

3
,−1

3
,
11

3
;

1

λ

)
(λ2 − λ+ 1)− 2

15
F

(
4

3
,−1

3
,
8

3
;

1

λ

)
(λ+ 1) (5λ2 − 8λ+ 5),

(27) 0 6= F

(
5

3
,
1

3
,
7

3
;

1

λ

)
− 2

3
F

(
2

3
,
1

3
,
4

3
;

1

λ

)
(λ+ 1) ,

0 6=10

7
F

(
8

3
,
1

3
,
10

3
;

1

λ

)
(λ2 − λ+ 1)− 1

6
F

(
5

3
,
1

3
,
7

3
;

1

λ

)
(λ+ 1) (8λ2 − 11λ+ 8)+

F

(
2

3
,
1

3
,
4

3
;

1

λ

)
λ(1− λ)2,

(28)

0 6=24

7
F

(
11

3
,
1

3
,
13

3
;

1

λ

)
(λ2 − λ+ 1)− 10

21
F

(
8

3
,
1

3
,
10

3
;

1

λ

)
(λ+ 1) (7λ2 − 10λ+ 7)+

2F

(
5

3
,
1

3
,
7

3
;

1

λ

)
λ(1− λ)2,

(29)

but each hypergeometric function in the expressions above is not algebraic over Q(λ).

Remark 6. The algebraic functions of the expressions in Propositions 1 and 14 can be found
using Gauss’ relations. Using the relation

(30) (c− b)F (a, b− 1, c; z) + (2b− c− bz + az)F (a, b, c; z) + b(z − 1)F (a, b+ 1, c; z) = 0,

with a = 2
3 , b = 1

3 and c = 4
3 we obtain that equation (3) is equal to 2

3λ
1
3 . Using the latter

together with equation (30) where a = 2
3 , b = −2

3 and c = 4
3 we find that equation (4) is equal

to 1
3λ

4
3 (λ+ 1). Similarly, we can see that equation (2) is equal to 10

3 λ
5
3 and equation (5) is equal

to 2
3λ

7
3 . Now, with these same ideas and using the relation

a(b− c)
c

zF (a+ 1, b, c+ 1; z) + ((a− b)z + (c− 1))F (a, b, c; z)

−(c− 1)F (a− 1, b, c− 1; z) = 0,

we obtain that equation (26) is equal to −2
3(λ− 1)

5
3λ

4
3 , equation (27) is equal to −2

3λ
2
3 (λ− 1)

1
3 ,

equation (28) is equal to −1
3(z − 1)

1
3 z

5
3 (z + 1) and equation (29) is equal to −4

3(z − 1)
1
3 z

8
3 .
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Remark 7. The differential forms used in Propositions 1 and 14 are all forms such that
ωβ
f2

is a good form,
ωβ
f is not a good form, with Aβ < 2 and Aβ′ /∈ N. We would like to get more

algebraic expressions of hypergeometric functions such that the hypergeometric functions are
not algebraic. One possible path would be to explore the integrals of good forms

ωβ
f2

with
ωβ
f is

not good form, Aβ > 2 and Aβ′ /∈ N. The following proposition tells us that such a path is not
possible.

Proposition 15. Consider f = g(x) + P (y), where g(x) = xm1
1 + · · · + xmnn and P (y) =

y(1− y)(λ− y). Suppose that
ωβ
fk

is a good form with Aβ > k, then
ωβ
fk−1 is a good form.

Proof. Since
ωβ
fk

is a good form, we can write

(31)
ωβ
fk

=
∑

Ckj
ωβ+(0′,kj)

f j
,

with Ckj ∈ C[λ] and Aβ+(0′,kj) = Aβ +
kj
3 < j such that j − 1 < Aβ +

kj−1
3 or j − 1 < Aβ +

kj−2
3

(see Remark 2). Now let us apply the process of pole order increment to the differential form
ωβ
fk−1 . We obtain

ωβ
fk−1

=
∑

Ĉkj
ωβ+(0′,kj)

f j−1
,

where j − 1 < Aβ+(0′,kj) < j. This means that we need to increment the pole order again. Let

us see what happens when j − 1 < Aβ +
kj−1

3 . We have[
ωβ+(0′,kj)

f j−1

]
=

Aβ +
kj
3

3(Aβ +
kj
3 − j)

[−aωβ+(0′,kj+2) − 2bωβ+(0′,kj+1)

f j

]
.

We must analyze each term of the previous expression. Let us see the most problematic term:
ωβ+(0′,kj+1)

fj
. Observe that j − 1

3 < Aβ+(0′,kj+1) < j + 1
3 . If Aβ+(0′,kj+1) = j, then Aβ+(0′,kj−2) =

j − 1. This implies that
ωβ
fk

is not good form or the differential form
ωβ+(0′,kj−1)

fj−1 appears one

step before obtaining equation (31). If we have
ωβ+(0′,kj−1)

fj−1 as Aβ+(0′,kj−1) = j − 2
3 we need

to apply the process of pole order increment again but by applying it we get that
ωβ
fk

is not a

good form because appears the differential form
ωβ+(0′,k+1)

fj
and Aβ+(0′,kj+1) = j. In conclusion

Aβ+(0′,kj+1) 6= j. If necessary we increment the pole order again. The other cases are similar,

leading us to conclude that
ωβ
fk−1 is a good form.

Remark 8. Proposition 15 tells us that in Proposition 13, the condition that
ωβ
f is a good form

is not necessary for k ≤ n
2 − 1.

To obtain more algebraic expressions of hypergeometric functions such that the hypergeo-
metric functions are not algebraic we integrate a strong generic Hodge cycle in a good form

ωβ
fk

such that
ωβ
f is not good form, Aβ < k and Aβ′ /∈ N, where f = g(x) +P (y), g(x) = x2

1 +xd2 and
P (y) = y(1− y)(λ− y). Indeed in the proof of Proposition 13 we saw that up to multiplication
by an element of Q(λ)

1

2πi

∫
δ0
res

(
ωβ
fk

)
=
B
(

1
2 ,

β2+1
d

)
B
(
Aβ′ , Aβ′

)
2πi

∑
j

Cj(λ)F

(
aj , bj , cj ;

1

λ

)
,(32)
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with F
(
aj , bj , cj ;

1
λ

)
contiguous to F

(
a, b, c; 1

λ

)
, where a = Aβ′ +β3, b = 1−Aβ′ , c = 2Aβ′ +β3.

Therefore if δ0 =
∑d−2

j=0 njδ0 ∗ δ−1
j is a generic Hodge cycle we have that (32) belongs to Q(λ).

Furthermore, if

d−2∑
j=0

njζ
j(β2+1)
d 6= 0,

using equation (20) we conclude that
∑

j Cj(λ)F
(
aj , bj , cj ;

1
λ

)
∈ Q(λ). The fact that

ωβ
f is not a

good form implies that Aβ′ = N
3 for some N ∈ N, and therefore F

(
a, b, c; 1

λ

)
is reducible. Also

note that

aj = a+ kj , bj = b+ lj , cj = c+ dj ,

with kj , lj , dj ∈ Z. Consider λj = 1 − cj , µj = cj − aj − bj , νj = aj − bj . A straightforward
computation allows us to verify that λj , µj , νj do not satisfy the hypothesis of [Żo l06, Theorem

12.17, item (c)] and therefore F
(
aj , bj , cj ;

1
λ

)
/∈ Q(λ). The same is valid for the cycle δ1.

4.4 Computational verification

We can check the validity of Propositions 1 and 14 using numerical computations by evaluating
λ at algebraic numbers. Call G(λ) the function defined by equation (2). We use the package
with(IntegerRelations) in Maple. The command

v := expand([seq(evalf[k](G(lambda)^j), j = 0 .. m)]);

computes powers of G(λ) from 0 to m with k digits of precision. With the following command

u := LinearDependency(v, method = LLL);

we find a Z-linear relation between 1, G(λ), G(λ)2, . . . , G(λ)m. The polynomial that satisfies
G(λ) can be displayed with the command

P := add(u[j]*z^(j-1), j = 1 .. m+1);

This computation is heuristic, since we only have approximations of G(λ). As an example of the
above take λ = i with i2 = −1, m = 400 and 400 digits of precision. We have the polynomial

81z4 − 900z2 + 10000.

These computations suggest thatG(i) is an algebraic number. This is, of course, one consequence

of Proposition 1. In fact, by Remark 6 we know that G(λ) = 10
3 λ

5
3 . Observe that G(i) is root

of 81z4 − 900z2 + 10000.
With these same commands we can verify what was proven by Reiter and Movasati in [MR06]

mentioned in the introduction of this paper.
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